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1 Introduction

Welcome to the PAST! This program is designed as a followeuPALSTAT, an
extensive package written by P.D. Ryan, D.A.T. Harper aBd\Whalley (Ryaret
al. 1995). It includes many of the functions which are commordgdiin palaeon-
tology and palaeoecology.

These days, a number of large and very good statisticalregsist, including
SPSS, SAS and extensions to Excel. Why yet another statjgtigram?

e PAST is free.

e PAST is tailor-made for palaeontology. This means thatdtudes func-
tions which are not found in off-the-shelf programs (for exde cladistics,
ordination, morphometry and biostratigraphy), and thaloies not include
functions which are of little use to palaeontologists arat tinly make the
user interface more confusing.

e PAST is easy to use, and therefore well suited for introdyctmurses in
quantitative palaeontology.

e PAST comes with a number of example data sets, case studiexarcises,
making it a complete educational package.

Further explanations of many of the techniques implemetaigether with case
histories are located in Harper (1999).

If you have questions, bug reports, suggestions for impnarés or other com-
ments, we would be happy to hear from you. Contact aharmer @hm ui 0. no.
The PAST home page is

http://fol k. ui o. no/ ohamrer/ past



2 Installation

The basic installation of PAST is easy: Just download theRisest.exe’ and put
it anywhere on your hard disk. Double-clicking the file withg the program.

The data files for the case studies can be downloaded sdpamtéogether in

the packed file 'casefiles.zip’. This file must be unpackedh &iprogram such as
WinZip.

We suggest you make a folder called 'past’ anywhere on yord disk, and
put all the files in this folder.

Please note: Problems have been reported for some combinations of screen
resolution and default font size in Windows - the layout brees ugly and it may
be necessary for the user to increase the sizes of windowdén to see all the text
and buttons. If this happens, please set the font size toll$omds’ in the Screen
control panel in Windows. We are working on solving this pei.

PAST also seems to have problems with some printers. Pipsisanters work
fine.

When you exit PAST, a file called 'pastsetup’will be autoroally placed in
your personal folder (for example 'My Documents’ in Windo@&/98), containing
the last used file directories.



3 Entering and manipulating data

PAST has a spreadsheet-like user interface. Data are érateran array of cells,
organized in rows (horizontally) and columns (vertically)

Entering data

To input data in a cell, click on the cell with the mouse ancetypthe data. This
can only be done when the program is in the 'Edit mode’. Toc$eldit mode, tick
the box above the array. When edit mode is off, the array isdld@nd the data
cannot be changed. The cells can also be navigated using tive keys.

Any text can be entered in the cells, but almost all functiaiisexpect num-
bers. Both comma (,) and decimal point (.) are accepted asdkseparators.

Absence/presence data are coded as 0 or 1, respectivelyothay positive
number will be interpreted as presence. Absence/preseatéees can be shown
with black squares for presences by ticking the 'Square mmmeabove the array.

Missing data are coded with question marks ('?’) or the vallie Unless
support for missing data is specifically stated in the docuat®n for a function,
the function will not handle missing data correctly, so besti.

The convention in PAST is that items occupy rows, and vaemlzolumns.
Three brachiopod individuals might therefore occupy row& and 3, with their
lengths and widths in columns A and B. Cluster analysis viilegs cluster items,
that is rows. For Q-mode analysis of associations, samplts) should there-
fore be entered in rows, while taxa (species) are in colunie. switching be-
tween Q-mode and R-mode, rows and columns can easily behateged using
the Transpose operation.

Selecting areas

Most operations in PAST are carried only out on the area ohathay which you
have selected (marked). If you try to run a function whicheotp data, and no
area has been selected, you will get an error message.

e Arow is selected by clicking on the row label (leftmost colum
e A column is selected by clicking on the column label (top row)

e Multiple rows are selected by selecting the first row labdent shift-clicking
(clicking with the Shift key down) on the additional row labe Note that
you can not 'drag out’ multiple rows - this will instead moveetfirst row
(see below).

e Multiple columns are similarly marked by shift-clickingetadditional col-
umn labels.



e The whole array can be selected by clicking the upper lefieoof the array
(the empty grey cell) or by choosing 'Select all’ in the Edigmu.

e Smaller areas within the array can be selected by 'draggitighe area, but
this only works when 'Edit mode’ is off.

Renaming rows and columns

When PAST starts, rows are numbered from 1 to 99 and colunenglaelled A to
Z. For your own reference, and for proper labelling of graptesl should give the
rows and columns more descriptive but short names. ChoasgaiRe columns’
or 'Rename rows’ in the Edit menu. You must select the whalayaior a smaller
area as appropriate.

Another way is to select the 'Edit labels’ option above theeggsheet. The
first row and column are now editable in the same way as thefdése cells.

Increasing the size of the array

By default, PAST has 99 rows and 26 columns. If you should meede, you

can add rows or columns by choosing 'Insert more rows’ orethmore columns’
in the Edit menu. Rows/columns will be inserted after thekedrarea, or at the
bottom/right if no area is selected. When loading large diéga, rows and/or
columns are added automatically as needed.

Moving a row or a column

A row or a column (including its label) can be moved simply tigking on the
label and dragging to the new position.

Cut, copy, paste

The cut, copy and paste functions are found in the Edit merate khat you can
cut/copy data from the PAST spreadsheet and paste into pthgrams, for ex-
ample Word and Excel. Likewise, data from other programslmpasted into
PAST.

Remember that local blocks of data (not all rows or columras) only be
marked when 'Edit mode’ is off.

All modules giving graphic output have a 'Copy graphic’ lomtt This will
place the graphical image into the paste buffer for pastitmother programs, such
as a drawing program for editing the image. Note that graphie copied using
the 'Enhanced Metafile Format’ in Windows. This allows eitiof individual
image elements in other programs. When pasting into C@we|dyou have to
choose 'Paste special’ in the Edit menu, and then choosealfitrdd metafile’.
Some programs may have idiosyncratic ways of interpretikdr Enages - beware
of strange things happening.



Remove

The remove function (Edit menu) allows you to remove setbctav(s) or col-
umn(s) from the spreadsheet. The removed area is not captbd paste buffer.

Grouping (colouring) rows

Selected rows (data points) can be tagged with one of 1Zt¥acolors using
the 'Tag rows’ option in the Edit menu. Each group is also eisted with a
symbol (dot, cross, square, diamond, plus, circle, trianighe, bar, filled square,
star, oval). This is useful for showing different groups afalin plots, and is also
required by a number of analysis methods.

The 'Numbers to colors’ option in the Edit menu allows the tams 1-9 in
one selected column to set corresponding colours (symfmlt)e rows.

Transpose

The Transpose function, in the Edit menu, will intercharmesand columns. This
is used for switching between R mode and Q mode in clusteysisalprincipal
components analysis and seriation.

Grouped columns to multivar

Converts from a format with multivariate items presenteddnsecutive groups of
N columns to the PAST format with one item per row and all vasaalong the
columns. ForN = 2, two specimens and four variables- d, the conversion is

from
al b1 a9 bg
C1 d1 (&) d2
to
al bl C1 d1
a9 bg (&) dg

Grouped rows to multivar

Converts from a format with multivariate items presenteatamsecutive groups
of N rows to the PAST format with one item per row and all variatesma the
columns. ForNV = 2, two specimens and four variables- d), the conversion is
from

ar b

ca d

az by

¢ da
to

ap b ca d
az by ¢ do



Samples to events (UA to RASC)

Given a data matrix of occurrences of taxa in a number of sasnipl a number
of sections, as used by the Unitary Associations moduls ftimction will convert
each section to a single row with orders of events (FADs, LADboth) as ex-
pected by the Ranking-Scaling module. Tied events (in theessample) will be
given equal ranking.

Loading and saving data

The 'Open’ function is found in the File menu. PAST uses an ASle format, for
easy importing from other programs (e.g. Word) and easynegdiih a text editor.
The format is as follows:

. columnlabel columnlabel columnlabel
rowlabel data data data

rowlabel data data data
rowlabel data data data

Empty cells (like the top left cell) are coded with a full st¢p. Cells are
separated by white space, which means that you must nevepases in row or
column labels. 'Oxford Clay’ is thus an illegal column lalvehich would confuse
the program.

If any rows have been assigned a colour other than black,cdabels in
the file will start with an underscore, a number from 0 to 8 tidgimg the colour
(symboal), and another underscore.

In addition to this format, PAST can also detect and openifiléise following
formats:

¢ Nexus format (see below), popular in systematics.

e TPS format developed by Rohlf (only the landmark, id andesfi@lds are
supported, other fields are ignored).

e BioGraph format for biostratigraphy (SAMPLES or DATUM foat). |If
a second file with the same name but extension ".dct" is founadlill be
included as a BioGraph dictionary.

e RASC format for biostratigraphy. You must open the .DAT fidand the
program expects corresponding .DIC and .DEP files in the sdimetory.
The decimal depths format is not supported.

The 'Insert from file’ function is useful for concatenatingtd sets. The loaded
file will be inserted into your existing spreadsheet at tHecded position (upper
left). Other data sets can thus be inserted both to the rifjand below your
existing data.



Data from Excel

Data from Excel can be imported in two ways:

e Copy from Excel and paste into PAST. Note that if you want thet fiow
and column to be copied into the label cells in PAST, you neesitch on
the "Edit labels" option.

e Make sure that the top left cell in Excel contains a single(do&nd save as
tab-separated text in Excel. The resulting text file can mnegd directly in
PAST.

Reading and writing Nexus files

The Nexus file format is used by many cladistics programs. TPé&h read and
write the Data (character matrix) block of the Nexus formaterleaved data are
not supported. Also, if you have performed a parsimony aislgnd the 'Parsi-
mony analysis’ window is open, all shortest trees will beti®n to the Nexus file
for further processing in other programs (e.g. MacCladeamipf.



4 Transforming your data

These routines subject your data to mathematical opegatitinis can be useful for
bringing out features in your data, or as a necessary pregsoty step for some
types of analysis.
Logarithm
The Log function in the Transform menu log-transforms yatadising the natural
logarithm (base e):

y=In(z+1)

This is useful, for example, to compare your sample to a logral distribu-
tion or for fitting to an exponential model. Also, abundanegtadwith a few very
dominant taxa may be log-transformed in order to downwdigbde taxa.
Subtract mean
This function subtracts the column mean from each of thecsmlecolumns. The
means cannot be computed row-wise.

Remove trend

This function removes any linear trend from a data set (twlarmas with X-Y
pairs). This is done by subtraction of a linear regressioa from the Y values.
Removing the trend can sometimes be a useful operationtprigectral analysis.

Procrustes and Bookstein coordinates, Normalize size, Boaby size
removal

For description of these functions, see 'Geometrical agigily

Sort ascending and descending

Sorts the rows in the marked area, based on values in thedbestdlumn.
The 'Sort descending’ function is useful, for example, tot phxon abundances
against their ranks (this can also be done with the Abunditazel module).

Column difference

Simply subtracts two selected columns, and places thetiaghle next column.



Evaluate expression

This powerful feature allows flexible mathematical openasi on the selected ar-
ray of data. Each selected cell is evaluated, and the rempithiaes the previous
contents. A mathematical expression must be entered, vdaictinclude any of
the operators +, -, *, ,ﬁpower), and mod (modulo). Also supported are brackets (),
and the functions abs, atan, cos, sin, exp, In, sgrt, sgndrand trunc.

The following variables can also be used:

X (the contents of the current cell)

| (the cell to the left if it exists, otherwise 0)

r (the cell to the right)

u (the cell above, or up)

d (the cell below, or down)

mean (the mean value of the current column)

min (the minimum value)

max (the maximum value)

n (the number of cells in the column)

i (the row index)

j (the column index)

random (uniform random number from 0 to 1)

normal (Gaussian random number with mean 0 and variance 1)

integral (sum of current column)

stdev (standard deviation of current column)

Examples:
sqrt(x) Replaces all numbers with their square roots
(x-mean)/stdev Mean and standard deviation normalizatiolumn-wise
x-0.5*(max+min)  Centers the values around zero
(u+x+d)/3 Three-point moving average smoothing

X-U First-order difference

i Fills the column with the row numbers (requires non-empljs; such as all zer
sin(2*3.14159%i/n) Generates one period of a sine functlown a column (requires non-empty ce
5*normal+10 Normally distributed random number, mean 16 standard deviation 5



5 Plotting functions

Graph

Plots one or more columns as separate graphs. The x co@slined set auto-
matically to 1,2,3,... There are three plot styles avadlalraph (lines), bars and
points. The 'X labels’ options sets the x axis labels to thgrapriate row names.

XY graph

Plots one or more pairs of columns containing x/y coordineties. The 'log Y’
option log-transforms your Y values (if necessary, a coristaadded to make the
minimum log value equal to 0). The curve can also be smootlsatyB-point
moving average.

95 percent confidence ellipses can be plotted in most sqalties in PAST,
such as scores for PCA, CA, DCA, PCO, NMDS, and relative amtigbavarps.
The calculation of these ellipses assumes a bivariate natistebution.

Convex hulls can also be drawn in the scatter plots, in omshbw the areas
occupied by points of different 'colours’. The convex hdlthe smallest convex
polygon containing all points.

The minimal spanning tree is the set of lines with minimahkdength, con-
necting all points. In the XY graph module, Euclidean lesgth2D are used.

Histogram

Plots histograms (frequency distributions) for one or mmwkimns. The number
of bins is 10 by default, but can be changed by the user. Thentfimal" option
draws a graph with a fitted normal distribution (Parametstineation, not Least
Squares).

Box plot

Box plot for one or several columns (samples) of univaria&dFor each sample,
the 25-75 percent quartiles are drawn using a box. The méslishown with a
horizontal line inside the box. The minimal and maximal eslare shown with
short horizontal lines ('whiskers”).

Ternary

Ternary plot for three columns of data, normally containimgportions of compo-
sitions.

Survivorship

Survivorship curves for one or more columns of data. The dédtanormally con-

sist of age or size values. A survivorship plot shows the remub individuals
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which survived to different ages. Assuming exponentialrgho(highly question-
able!), size should be log-transformed to age. This can be diher in the Trans-
form menu, or directly in the Survivorship dialogue.

Landmark plot

This function is very similar to the 'XY graph’, the only difence being that all
XY pairs on each row are plotted with the appropriate row gpobind symbol. Itis
well suited for plotting landmark data.

Landmarks 3D

Plotting of points in 3D (XYZ triples). Especially suitedrf8D landmark data, but
can also be used e.g. for PCA scatter plots along three pahcomponents. The
point cloud can be rotated around thand they axes (note: left-handed coordinate
system). The 'Perspective’ slider is normally not used. 'Biems’ option draws
a line from each point down or up to a plane centered alongythgis, which
can sometimes enhance 3D information. 'Lines’ draws lirssvben consecutive
landmarks within each separate specimen (row). 'Axes’ shitwy three coordinate
axes with the centroid of the points as the origin.

Normal probability plot

Plots a normal probability (normal QQ) plot for one columndafta. A normal
distribution will plot on a straight line. For comparisom BMA regression line is
given, together with the Probability Plot Correlation Clagént.

Matrix

Two-dimensional plot of the data matrix, using a grayscaith white for lowest
value, black for highest. Can be useful to get an overview avarge data matrix.

11



6 Basic statistics

Univariate statistics

[ Typical application

| Assumptions

| Data needed |

of a univariate sample

Quick statistical description None,

for

but variance an
standard deviation are mo
meaningful
distributed data

normally

d Single column of measure
stor counted data

Displays the following statistics: Number of entries (Nhallest value (Min),
largest value (Max), mean value (Mean), standard erroreoéitimate of the mean
(Std. error), population variance (that is, the variancéhefpopulation estimated
from the sample), population standard deviation (squasteabvariance), median,
skewness (positive for a tail to the right) and kurtosis (gpasfor a peaked distri-

bution).

Missing data (?) are supported.

Comparing data sets

There are many different standard tests available for camgp&vo distributions.
Here is the standard disclaimer: You can never prove thatdistvibutions are
the same. A high probability value is only consistent withraisr distribution,
but does of course give an indication of the similarity betwéhe two sample
distributions. On the other hand, a very low probabilityueabdoes show, to the
given level of significance, that the distributions areeatint.

Chi-square (one sample vs. normal)

| Typical application

| Assumptions

| Data needed

Testing for normal distribu-
tion of a sample

Large sample (N>30)

Single column of measure
or counted data

Tests whether a single distribution (one selected colusinpimal, by binning
the numbers in four compartments. This test is generallyriof to the Shapiro-
Wilk test, and should only be used for relatively large pagiohs (N>30). See
Brown & Rothery (1993) or Davis (1986) for details.

Missing data (?) are supported.

Shapiro-Wilk (one sample vs. normal)

[ Typical application

| Assumptions

| Data needed

Testing for normal distribu-

tion of a sample

Minimum 3,
5000 data points

maximum

Single column of measure
or counted data
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Tests whether a single distribution (one selected colusinpimal. This test
is designed for populations with< NV <5000.

Missing data (?) are su

pported.

F and t tests (two samples)

[ Typical application [

Assumptions |

Data needed

Testing for equality of the
variances and means of tw
samples

Normal or almost norma
odistribution (apart from the
permutation test)

Two columns of measure
or counted data

Two columns must be selected. Tletest compares the variances of two
distributions, while the test compares their means. TReandt statistics, and the
probabilities that the variances and means of the parentlatigns are the same,

are given. The' andt tests should only be used if you have reason to believe that

the parent populations are close to normally distributdte $hapiro-Wilk test for
one distribution against a normal distribution can give goudea about this.
Also, thet test is really only applicable when the variances are thees&bo
if the F' test says otherwise, you should be cautious about thst. An unequal
variancet statistic (Welch test) is also given, which should be usdtiimcase.
The permutation test compares the observestatistic (hormalized difference

between means) with theestatistics from 1000 (can be changed by the user) ran-

dom pairs of replicates from the pooled data set. This telbtowimore accurate

than the normat test for non-normal distributions and small samples.
Sometimes publications give not the data, but values foptagize, mean and

variance for two populations. These can be entered manusihg the 'F and t

from parameters’ option in

the menu.

See Brown & Rothery (1993) or Davis (1986) for details.
Missing data (?) are supported.

How do | test lognormal d

istributions?

All of the above tests apply to lognormal distributions adlw&ll you need to do
is to transform your data first, by taking the log transfornthie Transform menu.
You might want to 'backup’ your data column first, using Coayd then get your
original column back using Paste.

t test (one sample)

| Typical application |

Assumptions

| Data needed

Testing whether the mean ¢
a sample is equal to a give
value

fNormal or almost norma
ndistribution

One column of measure
data
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The one-sampletest is used to investigate whether the sample is likely ve ha
been taken from a population with a given (theoretical) mean

Paired t test. Say that a measurement such as length of claw has been taken
on the left and right side of a number of crab specimens, and/ave to test for
directed asymmetry (difference between left and right)wA-samplef test is not
appropriate, because the values are not independent.adinstee can perform a
one-samplé test of left minus right against the value zero.

Missing data (?) are supported.

Chi-square (two samples)

| Typical application | Assumptions | Data needed |

Testing for equal distribu
tion of compartmentalized
counted data

Each compartment contair
, ing at least five individuals

-Two columns of counted

data in different compartt

ments (rows)

The Chi-square test is the one to use if your data consisteohtimbers of
elements in different bins (compartments). For examplis, tdst can be used to
compare two associations (columns) with the number of iddals in each taxon
organized in the rows. You should be a little cautious abaaghsomparisons if
any of the bins contain less than five individuals.

There are two options that you should select or not for comesults. 'Sample
vs. expected’ should be ticked if your second column cossi$tvalues from a
theoretical distribution (expected values) with zero etsars. If your data are
from two counted samples each with error bars, leave thisopex. This isot a
small-sample correction.

'One constraint’ should be ticked if your expected valuegehlaeen normal-
ized in order to fit the total observed number of events, ond tounted samples
necessarily have the same totals (for example because il@gentages). This
will reduce the number of degrees of freedom by one. When tomstraint” is
selected, a permutation test is available, with 1000 ramgipermutated replicates
(row and column sums kept constant).

See Brown & Rothery (1993) or Davis (1986) for details.

Missing data (?) are supported.

Mann-Whitney U (two samples)

| Typical application
Comparing the medians @
two samples

| Assumptions

fBoth samples haveV >
7, and similar distribution
shapes.

| Data needed |

Two columns of measure
or counted data

Two columns must be selected. The two-tailed (Wilcoxon) Mavhitney U
test can be used to test whether the medians of two indepedi#ributions are
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different. This test is non-parametric, which means thatdistributions can be of
any shape. PAST uses an approximation based:otest, which is only valid for

N > 7. Itincludes a continuity correction.

See Brown & Rothery (1993) or Davis (1986) for details.

Missing data (?) are supported.

Kolmogorov-Smirnov (two samples)

[ Typical application

Assumptions

| Data needed |

Comparing the distribution
of two samples

5 None

data

Two columns must be selected. The K-S test can be used totliegit@r two in-
dependent distributions of continuous, unbinned numkedata are different. The
K-S test is non-parametric, which means that the distiiimstican be of any shape.
If you want to test just the locations of the distribution @@s), you should use

instead the Mann-Whitney U test.

See Davis (1986) for d

Missing data (?) are supported.

etails.

Spearman’s rho and Kendall’s tau (two samples)

| Typical application

| Assumptions

| Data needed |

Testing whether two vari
ables are correlated

None

or counted paired data (sug
asx/y pairs)

These non-parametric rank-order tests are used to tesbrfi@lation between

two variables.

Missing data (?) are supported.

Correlation matrix

| Typical application

| Assumptions

| Data needed |

Quantifying correlation be
tween two or more variable

D

Normal distribution

Two or more columns of
measured or counted var
ables

A matrix is presented with the correlations between allgafrcolumns. Cor-
relation values (Pearsornvg are given in the lower triangle of the matrix, and the
probabilities that the columns are uncorrelated are ginghe upper.

15
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Variance/covariance matrix

| Typical application | Assumptions | Data needed |

Quantifying covariance bef None Two or more columns of

tween two or more variables measured or counted varj-
ables

A symmetric matrix is presented with the variances and ¢amaes between
all pairs of columns.
Missing data are supported by pairwise deletion.

Contingency table analysis

| Typical application | Assumptions | Data needed |
Testing for dependence be-None Matrix of counted data in
tween two variables compartments

A contingency table is input to this routine. Rows represkatdifferent states
of one nominal variable, columns represent the states dhanaominal variable,
and cells contain the counts of occurrences of that spet#ie ¢row, column) of
the two variables. A measure and probability of associatibthe two variables
(based on Chi-square) is then given.

For example, rows may represent taxa and columns samplesuat (with
specimen counts in the cells). The contingency table aisatlgsn gives informa-
tion on whether the two nominal variables "taxon" and "ldgalare associated. If
not, the data matrix is not very informative. For detail®e Beesst al. (1992).

One-way ANOVA

| Typical application | Assumptions | Data needed |
Testing for equality of th? Normal distribution and Two or more columns of

means of several univariatesimilar variances and measured or counted data
samples

sample sizes

One-way ANOVA (analysis of variance) is a statistical pioe for testing the
null hypothesis that several univariate data sets (in cok)rhave the same mean.
The data sets are required to be close to normally distdbute

See Brown & Rothery (1993) or Davis (1986) for details.

Levene’s test for homogeneity of variance (homoskeda&gfidhat is, whether
variances are equal as assumed by ANOVA, is also given.

If the ANOVA shows significant inequality of the means (smallyou can go
on to study the given table of "post-hoc" pairwise comparssdased on Tukey'’s
HSD test. The Studentized Range Statigics given in the lower left triangle of

16



the array, and the probabilitiegequal) in the upper right. Sample sizes do not
have to be equal for the version of Tukey’s test used.

Two-way ANOVA

| Typical application | Assumptions | Data needed |
Testing for equality of thg Normal distribution and A matrix of measured o
means of several univariatesimilar ~ variances  and counted data, with one fag-
samples, taken across twosample sizes tor in columns and the
sets of factors (e.g. species other marked with grouping
and soil type), and for inter (colouring) of rows. All ele-
action between the factors ments in the matrix must be

filled.

Two-way ANOVA (analysis of variance) is a statistical prdaes for testing
the null hypotheses that several univariate samples havedme mean across
each of the two factors, and that there are no dependenniesations) between
factors. The samples are assumed to be close to normalhjbdied and have
similar variances. If the sample sizes are equal, these ssonaptions are not
critical.

Kruskal-Wallis test

| Typical application | Assumptions | Data needed |
Testing for equality of thg None Two or more columns of
medians of several univari- measured or counted data

ate samples

The Kruskal-Wallis test can be regarded as a non-paramaitecnative to
ANOVA (Zar 1996). TheH statistic and thed statistic corrected for tiesH«c)
are given, together with avalue for equality (assuming a chi-squared distribution
of He).

In the present version, PAST does not include a non-paranpztst hoc test.

Similarity/distance indices

| Typical application | Assumptions | Data needed |
Comparing two or more Equal sampling conditions| Two or more columns of
samples presence/absence (1/0) or

abundance data with taxa
down the rows

14 similarity and distance measures, as described undsteClAnalysis are
available. Note that some of these are similarity indicds)enothers are distance
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indices (in cluster analysis, these are all converted tdagiities). All pairs of rows
are compared, and the results given in a matrix.
Missing data are supported as described under Cluster ginaly

Mixture analysis

[ Typical application [

Assumptions | Data needed

Fitting a univariate data s¢
to a mixture of two or more
Gaussian (normal) distribu
tions

t Sampling from a mixture of
two or more normally disA
- tributed populations

One column of measure
data

Mixture analysis is an advanced maximum-likelihood metfardestimating
the parameters (mean, standard deviation and proportfdmjooor more univari-
ate normal distributions, based on a pooled univariate Eanfpor example, the
method can be used to study differences between sexes (bwp)r or several
species, or size classes, when no independent informaliouat group member-

ship is available.

PAST uses the EM algorithm, which can get stuck on a locahupti. The
procedure is therefore automatically run 10 times, eacle tivith new, random
starting positions for the means. The starting values Bomddrd deviation are set
to s/G, wheres is the pooled standard deviation adis the number of groups.
The starting values for proportions are set t6:. The user is still recommended to
run the program a few times to check for stability of the dolu("better" solutions

have less negative log like

lihood values).
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7 Multivariate statistics

Principal components analysis

| Typical application | Assumptions | Data needed |
Reduction and interpretation Debated Two or more rows of mea
of large multivariate data sured data with three or
sets with some underlying more variables
linear structure

Principal components analysis (PCA) is a procedure for figudiypothetical
variables (components) which account for as much of theamaé in your multi-
dimensional data as possible (Davis 1986, Harper 1999)sélhew variables are
linear combinations of the original variables. PCA has sahapplications, two of
them are:

e Simple reduction of the data set to only two variables (the tmost impor-
tant components), for plotting and clustering purposes.

e More interestingly, you might try to hypothesize that thestmonportant
components are correlated with some other underlying bigsa For mor-
phometric data, this might be simply age, while for assamiatit might be
a physical or chemical gradient (e.g. latitude or positiorosas the shelf).

The PCA routine finds the eigenvalues and eigenvectors otiti@nce-covariance
matrix or the correlation matrix. Choose var-covar if aluywariables are mea-
sured in the same unit (e.g. centimetres). Choose cooelétiormalized var-
covar) if your variables are measured in different unités tmplies normalizing
all variables using division by their standard deviatioiiie eigenvalues, giving
a measure of the variance accounted for by the correspomdtjegvectors (com-
ponents) are given for all components. The percentagesriaing accounted for
by these components are also given. If most of the varianeedsunted for by
the first one or two components, you have scored a success thetvariance is
spread more or less evenly among the components, the PCA &aghse not been
very successful.

The Jolliffe cut-off value gives an informal indication oW many principal
components should be considered significant (Jolliffe,61.98omponents with
eigenvalues smaller than the Jolliffe cut-off may be comsd insignificant, but
too much weight should not be put on this criterion.

The 'Scree plot’ (simple plot of eigenvalues) can also beduseinformally
indicate the number of significant components. After thisveustarts to flatten
out, the corresponding components may be regarded asifitsagi

The 'View scatter’ option allows you to see all your data peifrows) plotted
in the coordinate system given by the two most important aomepts. If you have
tagged (grouped) rows, the different groups will be showingidifferent symbols
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and colours. You can also plot the Minimal Spanning Tree ctvlis the shortest

possible set of connected lines connecting all points. fitag be used as a visual
aid in grouping close points. The MST is based on an Euclidiéstance measure
of the original data points, so it is most meaningful whenyallir variables use

the same unit. The ’Biplot’ option will show a projection dfe original axes

(variables) onto the scattergram. This is another visadis of the component
loadings (coefficients) - see below. Note that the lengthisasfe axes are arbitrarily
scaled, all by the same factor, for giving a clear diagram.

The 'View loadings’ option shows to what degree your diffareriginal vari-
ables (given in the original order along theaxis) enter into the different compo-
nents (as chosen in the radio button panel). These complwshihgs are impor-
tant when you try to interpret the 'meaning’ of the composeiithe 'Coefficients’
option gives the PC coefficients, while 'Correlation’ giee correlation between
a variable and the PC scores. Do not use the latter if you darg d®CA on the
correlation matrix.

The 'SVD’ option will enforce use of the supposedly supefangular Value
Decomposition algorithm instead of "classical”" eigengsial The two algorithms
will normally give almost identical results, except that BWill center on zero.
Also, the eigenvalues will have different absolute valuéeif relative values re-
main the same), and axes may be flipped.

For the 'Shape PCA' and 'Shape deform’ options, see themeci Geomet-
rical Analysis.

Bruton & Owen (1988) describe a typical morphometrical agapion of PCA.

Missing data are supported by column average substitution.

Principal coordinates

W:}‘({)

| Typical application | Assumptions | Data needed |
Reduction and interpretation Unknown Two or more rows oOf
of large multivariate data measured, counted or pre
sets with some underlying ence/absence data wit
linear structure three or more variables, @
a symmetric similarity or|

distance matrix

Principal coordinates analysis (PCO) is another ordinati@thod, somewhat
similar to PCA. The algorithm is taken from Davis (1986).

The PCO routine finds the eigenvalues and eigenvectors oftixnsantain-
ing the distances between all data points. The Gower meaglirsormally be
used instead of Euclidean distance, which gives resultdagito PCA. An addi-
tional eleven distance measures are available - these pla@red under Cluster
Analysis. The eigenvalues, giving a measure of the variagceunted for by the
corresponding eigenvectors (coordinates) are given &ofittst four most important
coordinates (or fewer if there are fewer than four data gdinthe percentages of

20



variance accounted for by these components are also given.

The 'View scatter’ option allows you to see all your data peifrows) plotted
in the coordinate system given by the PCO. If you have taggemliped) rows, the
different groups will be shown using different symbols antbars. The "Eigen-
value scaling" option scales each axis using the squareofdbé eigenvalue (rec-
ommended). The minimal spanning tree option is based orelketed similarity
or distance index in the original space.

Missing data are supported by pairwise deletion (not forRaep-Crick, rho
or user-defined indices).

Non-metric multidimensional scaling

| Typical application | Assumptions | Data needed |
Reduction and interpretation None Two or more rows oOf
of large multivariate ecologt measured, counted or pres-
ical data sets ence/absence data with

two or more variables, or
a symmetric similarity or|
distance matrix.

Non-metric multidimensional scaling is based on a distane&rix computed
with any of 14 supported distance measures, as explainest @idster Analysis
below. The algorithm then attempts to place the data painéstivo-dimensional
coordinate system such that trenked differences are preserved. For example, if
the original distance between points 4 and 7 is the nintrekrgf all distances be-
tween any two points, points 4 and 7 will ideally be placedchdihat their euclidean
distance in the plane is still the ninth largest. Non-maetridtidimensional scaling
intentionally does not take absolute distances into adcoun

The program will converge on a different solution in each depending upon
the random initial conditions.

The algorithm implemented in PAST, which seems to work veel vis based
on a new approach developed by Taguchi & Oono (in press).

The minimal spanning tree option is based on the selectathsiyor distance
index in the original space.

Shepard plot: This plot of obtained versus observed (target) ranks atdithe
quality of the result. Ideally, all points should be placedabstraight ascending
line (z = y).

Missing data are supported by pairwise deletion (not forRlaep-Crick and
rho indices).
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Correspondence analysis

| Typical application | Assumptions | Data needed |
Reduction and interpretation Unknown Two or more rows Of
of large multivariate ecologt counted data in three Q@

ical data sets with environ
mental or other gradients

more compartments

Correspondence analysis (CA) is yet another ordinatiorhogktsomewhat
similar to PCA but for counted data. For comparing assamiati(columns) con-
taining counts of taxa, or counted taxa (rows) across assoes, CA is the more
appropriate algorithm. The algorithm is taken from Davidg@).

The CA routine finds the eigenvalues and eigenvectors fortebtantaining
the Chi-squared distances between all data points. Thewilyes, giving a mea-
sure of the similarity accounted for by the correspondirgeevectors, are given
for the first four most important eigenvectors (or fewer iérh are less than four
variables). The percentages of similarity accounted foth®ge components are
also given. Note that the very first, so-called 'trivial’ eityector is not included in
the output.

The 'View scatter’ option allows you to see all your data peifrows) plotted
in the coordinate system given by the CA. If you have taggedujoged) rows, the
different groups will be shown using different symbols aotbars.

In addition, the variables (columns, associations) canlbtegl in the same
coordinate system (Q mode), optionally including the cotuabels. If your data
are 'well behaved’, taxa typical for an association shoudd i the vicinity of that
association.

If you have more than two columns in your data set, you can shoom view a
scatter plot on the second and third axes.

Relay plot: This is a composite diagram with one plot per column. Thesplo
are ordered according to CA column scores. Each data popibited with CA
first-axis row scores on the vertical axis, and the origirshdoint value (abun-
dance) in the given column on the horizontal axis. This maynbet useful when
samples are in rows and taxa in columns. The relay plot walhtehow the taxa
ordered according to their positions along the gradiems, far each taxon the
corresponding plot should ideally show a unimodal peaktlypaverlapping with
the peak of the next taxon along the gradient (see Hennebkee& 1991 for an
example from sedimentology).

Missing data are supported by column average substitution.
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Detrended correspondence analysis

| Typical application | Assumptions | Data needed |
Reduction and interpretation Unknown Two or more rows Of
of large multivariate ecologt counted data in three ar

ical data sets with environ
mental or other gradients

more compartments

The Detrended Correspondence (DCA) module uses the samettaly as
Decorana (Hill & Gauch 1980), with modifications accordingtxanen & Minchin
(1997). Itis specialized for use on ’ecological’ data seith @bundance data (taxa
in rows, localities in columns). When the 'Detrending’ aptiis switched off, a
basic Reciprocal Averaging will be carried out. The reshlbdd be similar to
Correspondence Analysis (see above) plotted on the firsseqwhd axes.

Eigenvalues for the first three ordination axes are givema3A, indicating
their relative importance in explaining the spread in theada

Detrending is a sort of normalization procedure in two stepke first step
involves an attempt to 'straighten out’ points lying in ackgrwhich is a common
occurrence. The second step involves 'spreading out’ tirdsptio avoid clustering
of the points at the edges of the plot. Detrending may seembitneay procedure,
but can be a useful aid in interpretation.

Missing data are supported by column average substitution.

Canonical Correspondence Analysis

| Typical application | Assumptions | Data needed |

Reduction and interpretation None Two or more rows of sites

of large multivariate ecologt with taxa (species) in

ical data sets with environ- columns. The first columng

mental or other gradients contain environmenta|
variables.

Canonical Correspondence Analysis (Legendre & Legend88)1& corre-
spondence analysis of a site/species matrix where eachastgiven values for
one or more environmental variables (temperature, deptin gize etc.). The
ordination axes are linear combinations of the environadevdriables. CCA is
thus an example of direct gradient analysis, where the gnadin environmental
variables is known a priori and the species abundances ¢sepce/absences) are
considered to be a response to this gradient.

The implementation in PAST follows the eigenanalysis dtbar given in Leg-
endre & Legendre (1998). The ordinations are given as siteesc- fitted site
scores are presently not available. Environmental vatahte plotted as correla-
tions with site scores. Both scalings (type 1 and 2) of Lege&d_egendre (1998)
are available. Scaling 2 emphasizes relationships betggeties.
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Cluster analysis

| Typical application | Assumptions | Data needed |
Finding hierarchical groupt None Two or more rows of
ings in multivariate data sets counted, measured or pres-

ence/absence data in one

distance matrix.

more variables or categories,
or a symmetric similarity on

The hierarchical clustering routine produces a 'dendmogshowing how data
points (rows) can be clustered. For 'R’ mode clusteringtipgtweight on group-
ings of taxa, taxa should be in rows. Itis also possible todimdipings of variables
or associations (Q mode), by entering taxa in columns. ®itcbetween the two
is done by transposing the matrix (in the Edit menu).

Three different algorithms are available:

¢ Unweighted pair-group average (UPGMA). Clusters are pbin@sed on the
average distance between all members in the two groups.

¢ Single linkage (nearest neighbour). Clusters are joinsddban the smallest
distance between the two groups.

e Ward's method. Clusters are joined such that increase immwgroup vari-
ance is minimized.

One method is not necessarily better than the other, thdogledinkage is not
recommended by some. It can be useful to compare the deadnsggiven by the
different algorithms in order to informally assess the gihass of the groupings. If
a grouping is changed when trying another algorithm, thaing should perhaps
not be trusted.

For Ward’s method, a Euclidean distance measure is inhtrehé algorithm.
For UPGMA and single linkage, the distance matrix can be egetgpusing 13
different measures:

e The Euclidean distance (between rows) is a robust and wigghlicable
measure. Values are divided by the square root of the nunfheriables.
Distance is converted to similarity by changing the sign.

S

FEuclideanj, = \IZ(%]‘ — xik)?

i=1

e Correlation (of the variables along rows) using Pearson’a little mean-
ingless if you have only two variables.
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Correlation using Spearman’s rho (basically thealue of the ranks). Will
often give the same result as correlation using

Dice (Sorensen) coefficient for absence-presence (coddd aaspositive
numbers). Puts more weight on joint occurences than on niisres.

When comparing two columns (associations), a match is eduor all taxa
with presences in both columns. Using 'M’ for the number otchas and
"N’ for the the total number of taxa with presences in just aokumn, we
have

Dice similarity = 2M / (2M+N)
Jaccard similarity = M / (M+N)

The Simpson index is defined a$/N,,;,, where N,,;,, is the smaller of
the numbers of presences in the two associations. This immdats two as-
sociations as identical if one is a subset of the other, ngakinseful for
fragmentary data.

Bray-Curtis measure for abundance data.

Sist iy — ikl
=1 (i + k)

Bray — Curtisj, =
Cosine distance for abundance data - one minus the inneugrodl abun-

dances each normalised to unit norm.

Chord distance for abundance data (converted to similbyitghanging the
sign). Recommended!

i1 (Tijzik)
2 2
\/Zle Tij 21 T,

Chordj, = $2 -2
Morisita’s index for abundance data. Recommended!

o iy — 1)
R ST @
doici(@ig(zg — 1))
doic1 ik (=1 ik — 1)
237 (wi i)
(A1 + A2) 307y ig 2oiq Tk

Ay =

Morisitaj, =
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e Raup-Crick index for absence-presence data. Recommentleid! index
(Raup & Crick 1979) uses a randomization ("Monte Carlo")ogaure, com-
paring the observed number of species ocurring in both &dgnts with the
distribution of co-occurrences from 200 random replicates

e Horn’s overlap index for abundance data (Horn 1966).

S
Nj = Z:Cij (2)
=1
S
Ny = Yz
=1
Row - i (w35 + wag)In(@ij + war)] — D7y [wijInwgg] — 307 [wagInwg,]
Ojk =

(Nj + Nk)ln(Nj + Nk) - lean — NiInNg,

¢ Hamming distance for categorical data as coded with integ€he Ham-
ming distance is the number of differences (mismatchegthadhe distance
between (3,5,1,2) and (3,7,0,2) equals 2. In PAST, this immabtised to the
range (0,1).

e Manhattan distance: The sum of differences in each vari@oleverted to
similarity by changing the sign).

e User-defined similarity: Expects a symmetric similaritytmarather than
original data. No error checking!

e User-defined distance: Expects a symmetric distance nrather than orig-
inal data. No error checking!

See Harper (1999) or Davis (1986) for details.

Missing data: The cluster analysis algorithm can handle missing datagdod
as -1 or question mark (?). This is done using pairwise deletmeaning that
when distance is calculated between two points, any vasahlat are missing are
ignored in the calculation. Missing data are not supportedifard’s method, nor
for the Rho or the Raup-Crick similarity measures.

Two-way clustering: The two-way option allows simultaneous clustering in
R-mode and Q-mode. The graphics only support relativelylisiata sets.

Stratigraphically constrained clustering: This option will allow only adjacent
rows (or groups of rows) to be joined during the agglomeeatilustering proce-
dure. May produce strange-looking (but correct) dendmgta
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K-means clustering

| Typical application

| Assumptions

| Data needed |

Non-hierarchical clustering None
of multivariate data into 3
specified number of groups

Two or more rows of
counted or measured data
one or more variables

K-means clustering (e.g. Bow 1984) is a non-hierarchicastelring method.
The number of clusters to use is specified by the user, usaatlgrding to some
hypothesis such as there being two sexes, four geograpbgiahs or three species

in the data set

The cluster assignments are initially random. In an iteeagirocedure, items
are then moved to the cluster which has the closest clustannsnd the cluster
means are updated accordingly. This continues until itema@longer “jumping"
to other clusters. The result of the clustering is to someré&xdependent upon the
initial, random ordering, and cluster assignments mayefioeg differ from run to
run. This is not a bug, but normal behaviour in k-means clirgie

The cluster assignments may be copied and pasted back etoaim spread-
sheet, and corresponding colors (symbols) assigned taeims iusing the 'Num-
bers to colors’ option in the Edit menu.

Missing data are supported by column average substitution.

Seriation

| Typical application | Assumptions | Data needed |
Stratigraphical or environt None Presence/absence (1/0) m
mental ordering of taxa and trix with taxa in rows

localities

Seriation of an absence-presence matrix using the algodtscribed by Brower
and Kyle (1988). This method is typically applied to an agsian matrix with
taxa (species) in the rows and populations in the columns.cé&iostrained seri-
ation (see below), columns should be ordered accordingte sviterion, normally
stratigraphic level or position along a presumed faunaligra.

The seriation routines attempt to reorganize the data xmtch that the pres-
ences are concentrated along the diagonal. There are tanthigs: Constrained
and unconstrained optimization. In constrained optinbratonly the rows (taxa)
are free to move. Given an ordering of the columns, this mhoefinds the 'op-
timal' biozonation, that is, the ordering of taxa which givihe prettiest range
plot. Also, in the constrained mode, the program runs a 'Md@arlo’ simulation,
generating and seriating 30 random matrices with the sammbeauof occurences
within each taxon, and compares these to the original mairsee if it is more
informative than a random one (this procedure is time-canisg for large data

sets).
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In the unconstrained mode, both rows and columns are fre®@We m

Discriminant analysis and Hotelling’s 72

| Typical application | Assumptions | Data needed |
Testing for separation andMultivariate normality.| Two multivariate data sets of
equal means of two multir Hotelling’s test assumes measured data, marked with
variate data sets equal covariances. different colors

Given two sets of multivariate data, an axis is construct&ickv maximizes
the difference between the sets. The two sets are thenghitteg this axis using
a histogram.

This module expects the rows in the two data sets to be tagigledats (black)
and crosses (red), respectively.

Equality of the means of the two groups is tested by a muléitamanalogue to
thet test, calledHotelling’s T-squared, and ap value for this test is given. Normal
distribution of the variables is required, and also thatrthimber of cases is at least
two more than the number of variables.

Number of constraints. For correct calculation of the Hotellingjs value, the
number of dependent variables(constraints) must be specifi should normally
be left at 0, but for Procrustes fitted landmark data use 42@gror 6 (for 3D).

Discriminant analysis is a standard method for visuallyficoring or rejecting
the hypothesis that two species are morphologically distiblsing a cutoff point
at zero (the midpoint between the means of the discriminentes of the two
groups), a classification into two groups is shown in thewvimimbers" option.
The percentage of correctly classified items is also given.

Discriminant function: New specimens can be classified according to the dis-
criminant function. Take the inner product between the miessents on the new
specimen and the given discriminant function factors, dwedh tsubtract the given
offset value.

Leave one out (cross-evaluation): An option is available for leaving out one
row (specimen) at a time, re-computing the discriminantyaigawith the remain-
ing specimens, and classifying the left-out row accordir{gk given by the Score
value).

Beware: The combination of discriminant analysis and Hiotgs 72 test is
sometimes misused. One should not be surprised to find at&talliy significant
difference between two samples which have been chosen hétlolbjective of
maximizing distance in the first place! The division into tgroups should ideally
be based on independent evidence.

See Davis (1986) for details.

Missing data are supported by column average substitution.
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Paired Hotelling’s 7°

| Typical application | Assumptions | Data needed |
Testing for equal means of faMultivariate normality. A multivariate data se
paired multivariate data set of paired measured data
marked with different colors

The paired Hotelling’s test expects two groups of multigseidata, marked
with different colours. Rows within each group must be congige. The first row
of the first group is paired with the first row of the second grahe second row is
paired with the second, etc.

Missing data are supported by column average substitution.

Permutation test for two multivariate groups

| Typical application | Assumptions | Data needed |
Testing for qual means of The two groups have simila‘r Two multivariate data sets @

—+

two multivariate data sets | distributions (variances)

different colors

This module expects the rows in the two data sets to be grompedyo sets
by colouring the rows, e.g. with black (dots) and red (cresBows within each
group must be consecutive.

Equality of the means of the two groups is tested using pextiom with 2000
replicates (can be changed by the user), and the Mahalarqbi&red distance
measure. The permutation test is an alternative to Hogglitest when the as-
sumptions of multivariate normal distributions and egualaziance matrices do
not hold.

Missing data are supported by column average substitution.

Multivariate normality test

| Typical application | Assumptions | Data needed |
Testing for multivariate nor{ Departures from multivarii One multivariate sample of
mality ate normality detectable gsmeasured data, with vari-

departure from multivariate ables in columns
skewness or kurtosis

This test for multivariate normality (as assumed by a nundfenultivariate
tests) computes Mardia’s multivariate skewness and kisrtasth tests based on
chi-squared (skewness) and normal (kurtosis) distringtid\ difference in signif-
icance between the two tests should be regarded as an insimectesult. Also
note that many departures from multivariate normality widlundetected. Sample
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size should be reasonably large (>50), although a smalpkaoorrection is also
attempted.

Box’s M test

| Typical application | Assumptions | Data needed |
Testing for equivalence of Multivariate normality Two  multivariate  data
the covariance matrices far sets of measured data, or
two data sets two (square) variancer

covariance matrices, marked
with different colors

This test is rather specialized, testing for the equivateotthe covariance
matrices for two multivariate data sets. You can use eitherariginal multivariate
data sets from which the covariance matrices are autorfigta@@mputed, or two
specified variance-covariance matrices. In the latter, gamsemust also specify the
sizes (number of individuals) of the two samples.

The Box’s M statistic is given, together with a significan@ue based on a
chi-square approximation. Note that this test is suppgseelly sensitive. This
means that a high p value will be a good, although informaliciator of equality,
while a highly significant result (low p value) may in praetiterms be a somewhat
too sensitive indicator of inequality.

One-way MANOVA and Canonical Variates Analysis

| Typical application | Assumptions | Data needed |
Testing for equality of thg Multivariate normal distri-| Two or more samples of
means of several multivari- bution, similar variancest multivariate measured data,
ate samples, and ordinationcovariances marked with different col-
based on maximal separa- ors. The number of cases
tion (multigroup discrimi- must exceed the number of
nant analysis) variables.

One-way MANOVA (Multivariate ANalysis Of VAriance) is the ultivariate
version of the univariate ANOVA, testing whether severahpbes have the same
mean. If you have only two samples, you would perhaps ratbethe two-sample
Hotelling's T test.

Two statistics are provided: Wilk’s lambda with it's assaieid Rao’s F and the
Pillai trace with it's approximated F. Wilk's lambda is pedily more commonly
used, but the Pillai trace may be more robust.

Number of constraints. For correct calculation of the values, the number of
dependent variables(constraints) must be specified. lidhmmrmally be left at O,
but for Procrustes fitted landmark data use 4 (for 2D) or 6 3foy.
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Canonical Variates Analysis

An option under MANOVA, CVA produces a scatter plot of speeima along the
two first canonical axes, producing maximal and second toimmxseparation
between all groups (multigroup discriminant analysis).e Bxes are linear com-
binations of the original variables as in PCA, and eigeraslindicate amount of
variation explained by these axes.

Missing data are supported by column average substitution.

One-way ANOSIM

| Typical application | Assumptions | Data needed |
Testing for difference bet Ranked dissimilaritieg Two or more groups of mul

tween two or more multi{ within groups have similar tivariate data, marked with

variate groups, based on anymedian and range. different colours, or a symy

distance measure metric similarity or distance
matrix with similar groups.

ANOSIM (ANalysis Of Similarities) is a non-parametric tedtsignificant dif-
ference between two or maore groups, based on any distancied&larke 1993).
The distances are converted to ranks. ANOSIM is normally dee ecological
taxa-in-samples data, where groups of samples are to beatethp

In a rough analogy with ANOVA, the test is based on compariiggadces
between groups with distances within groups. tgbe the mean rank of all dis-
tances between groups, ang the mean rank of all distances within groups. The
test statisticR is then defined as

Ty — Tw

SRR

Large positiveR (up to 1) signifies dissimilarity between groups. The signifi
cance is computed by permutation of group membership, Vaifl® Beplicates (can
be changed by the user).

Missing data are supported by pairwise deletion (not forRhap-Crick, Rho
and user-defined indices).

One-way NPMANOVA

| Typical application | Assumptions | Data needed |

Testing for difference be; The groups have similar Two or more groups of mul
tween two or more multi{ distributions (similar vari-| tivariate data, marked with
variate groups, based on anyances) different colors, or a sym
distance measure metric similarity or distance
matrix with similar groups.
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NPMANOVA (Non-Parametric MANOVA) is a non-parametric tegtsignifi-
cant difference between two or more groups, based on argndistmeasure (An-
derson 2001). NPMANOVA is normally used for ecological tamessamples data,
where groups of samples are to be compared, but may also Heasse general
non-parametric MANOVA

NPMANOVA calculates arf’ value in analogy with ANOVA. In fact, for uni-
variate data sets and the Euclidean distance measure, NEMANs equivalent
to ANOVA and gives the samg value.

The significance is computed by permutation of group menhigers/ith 5000
replicates (can be changed by the user).
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8 Fitting data to functions

Linear

| Typical application | Assumptions | Data needed |
Fitting data to a straight None One or two columns of
line, or exponential or power counted or measured data
function

If two columns are selected, they represerindy values, respectively. If one
column is selected, it representsalues, and: values are taken to be the sequence
of positive integers (1,2,...). A straight lipe= ax+b is fitted to the data. There are
two different algorithms available: Standard regressiond BReduced Major Axis
(the latter is selected by ticking the box). Standard resjoeskeeps the: values
fixed, and finds the line which minimizes the squared errothény values. Use
this if your x values have very small errors associated with them. Reduvicgor
Axis tries to minimize both the and they errors. RMA fitting and standard error
estimation is according to Miller & Kahn (1962)¢t Davis (1986)!

Also, bothz andy values can be log-transformed (base 10), in effect fitting
your data to the ’allometric’ function = 10°z®. An « value around 1 indicates
that a straight-line ('isometric’) fit may be more applicabl

The values fora andb, their errors, a Chi-square correlation value (not for
RMA), Pearson’s: correlation, and the probability that the columns are notezo
lated are given.

The calculation of standard errors for slope and interceptiimes normal dis-
tribution of residuals and independence between the Jasamnd the variance of
residuals. If these assumptions are strongly broken, tefemble to use the boot-
strapped 95 percent confidence intervals (2000 replicaté® number of random
points selected for each replicate should normally be k&pt,dut may be reduced
for special applications.

In Standard regression (not RMA), a 95 percent "WorkingdHiolg" confi-
dence band for the fitted line (not for the data points!) islaiée.

Residuals

The Residuals window reports the distances from each datatpdhe regression
line, in thex andy directions. Only the latter is of interest when using ordmna
linear regression rather than RMA. The residuals can beeddpack to the spread-
sheet and inspected for normal distribution and indeperelbatween independent
variable and residual variance (homoskedasticity).

Exponential functions

Your data can be fitted to an exponential functios e’e®® by first log-transforming
just youry column (in the Transform menu) and then performing a stidigh fit.
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Sinusoidal

[ Typical application

| Assumptions

| Data needed

Fitting data to a set of peri
odic, sinusoidal functions

- None

Two columns of counted o
measured data

[

Two columns must be selected &ndy values). A sum of up to eight sinusoids
with periods specified by the user, but with unknown ampétidnd phases, is
fitted to the data. This can be useful for modelling peridiisiin time series, such
as annual growth cycles or climatic cycles, usually in caration with spectral
analysis. The algorithm is based on a least-squares oritemd singular value

decomposition (Presst al. 1992). By default, the periods are set to the range of

thex values, and harmonics (1/2, 1/3, 1/4, 1/5, 1/6, 1/7 and 1{Befundamental
period). These values can be changed, and need not be intianpnoportion.
With a little effort, frequencies can also be estimated ligl nd error, by
adjusting the frequency so that amplitude is maximized (pinocedure is difficult
with more than a single sinusoidal).
It is not meaningful to specify periodicities that are srathan two times the
typical spacing of data points.
Each sinusoid is given by = a cos(2nz /T — ¢), wherea is the amplitude7’

is the period an@ is the phase.
Logistic
| Typical application | Assumptions | Data needed
Fitting data to a logistic None Two columns of counted o

or von Bertalanffy growth

model

measured data

[

Attempts to fit the data to the logistic equatign= a/(1 + b x e~“*). For
numerical reasons, theaxis is normalized. The algorithm is a little complicated.
The value ofa is first estimated to be the maximal valueyofThe values ob and
c are then estimated using a straight-line fit to a linearizedeh

Though acceptable, this estimate can optionally be imgrtweusing the esti-
mated values as an initial guess for a Levenberg-Marquandinear optimization
(tick the box). This procedure can sometimes improve théddit,due to the nu-
merical instability of the logistic model it often fails waian error message.

The logistic equation can model growth with saturation, aag used by Sep-
koski (1984) to describe the proposed stabilization of neadiversity in the late

Palaeozoic.

The 95 percent confidence intervals are based on 2000 gwts{plicates, not

using the Levenberg-Marquardt optimization step.
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\on Bertalanffy

An option in the 'Logistic fit' window. Uses the same algorithas above, but fits
to the von Bertalanffy equation = a * (1 — b x e~ “*). This equation is used for
modelling growth of multi-celled animals (in units of lehgtr width, not volume).

B-splines
| Typical application Assumptions Data needed
Smoothing noisy data None Two columns of counted o

measured data

Two columns must be selected &ndy values). The data are fitted with a
least-squares criterion to a B-spline, which is a sequeifidhird-order polyno-
mials, continuous up to the second derivative. A typicalligppon of this is the
construction of a smooth curve going through a noisy data set

A decimation factor is set by the user, and controls how matg gdoints con-
tribute to each polynomial section. Larger decimation gi@esmoother curve.

Note that sharp jumps in your data can give rise to oscitiatio the curve, and
that you can also get large excursions in regions with few datnts.

Abundance models

[ Typical application

| Assumptions

| Data needed

Fitting taxon abundance dig
tribution to one of threg
models

-None

One column of abundanc]
counts for a number of tax
in a sample

D

This module can be used for plotting logarithms of taxon alamees in de-
scending rank order (Whittaker plot), or number of speareakiundance octave
classes (as shown when fitting to log-normal distributidngan also fit the data to

one of three different standard abundance models:

e Geometric, where the 2nd most abundant species should haxeracount
of k<1 times the most abundant, the 3rd most abundant a taxort 0bén
times the 2nd most abundant etc. for a constanthis will give a straight
descending line in the Whittaker plot. Fitting is by simplechr regression
of the log abundances.

e Log-series, with two parametesisandx. The fitting algorithm is from Krebs

(1989).

e Log-normal. The fitting algorithm is from Krebs (1989). Thegéarithm
(base 10) of the fitted mean and variance are given. The cctafer to
power-of-2 abundance classes:
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Abundance

1

2-3

4-7
8-15
16-31
32-63
64-127

Octave

~NOoO O~ WN PR

A significance value based on chi-squared is given for eathesfe models,
but the power of the test is not the same for the tree modelgrandignificance
values should therefore not be compared. It is importargagys, to remember
that a high p value can not be taken to imply a good fit. A low galoes however
imply a bad fit.
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9 Diversity

Diversity statistics

| Typical application | Assumptions | Data needed

versity in samples

Quantifying taxonomical di{ Representative samples One or more columns, eag
containing counts of individ-
uals of different taxa dowr]

the rows

These statistics apply to association data, where numidérsligiduals are

tabulated in rows (taxa) and possibly several columns ¢iesthons). The available

statistics are as follows, for each association:

Number of taxa §)
Total number of individualsr{)

Dominance=1-Simpson index. Ranges from 0 (all taxa arellyquasent)
to 1 (one taxon dominates the community completely)= > (%)2 where
n; IS number of individuals of taxon

Simpson index=1-dominance. Measures 'evenness’ of themtority from
0 to 1. Note the confusion in the literature: Dominance amd@Sbn indices
are often interchanged!

Shannon index (entropy). A diversity index, taking into@aat the number
of individuals as well as number of taxa. Varies from O for coamities with

only a single taxon to high values for communities with maayat each with
few individuals. H = — )~ ™ In (™)

Buzas and Gibson’s evenneg$’ /S

Menhinick’s richness index - the ratio of the number of tazdhe square
root of sample size.

Margalef’s richness index(S — 1)/In(n), whereS is the number of taxa,
andn is the number of individuals.

Equitability. Shannon diversity divided by the logarithfhnumber of taxa.
This measures the evenness with which individuals are elivi@mong the
taxa present.

Fisher’s alpha - a diversity index, defined implicitly by themula S =
aln(1 4+ n/a) whereS is number of taxap is number of individuals and
is the Fisher's alpha.

Berger-Parker dominance: simply the number of individiratbe dominant
taxon divided byn.
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Most of these indices are explained in Harper (1999).

Approximate confidence intervals for all the indices can bmputed with a
bootstrap procedure. 1000 random samples are producedp(Rfi0to version
0.87b), each with the same total number of individuals ashedriginal sam-
ple. The random samples are taken from the total, pooledsgatéll columns).
For each individual in the random sample, the taxon is chegdnprobabilities
according to the original abundances. A 95 percent confalerterval is then cal-
culated. Note that the diversity in the replicates will oftee less than, and never
larger than, the pooled diversity in the total data set.

Since these confidence intervals are all computed with oegpehe pooled
data set, they do not represent confidence intervals fonthiddual samples. They
are mainly useful for identifying samples where the giveredsity index falls out-
side the confidence interval. Bootstrapped comparisonvefrsity indices in two
samples is provided in the "Compare diversities" module.

Quadrat richness

[#]
(9]

| Typical application | Assumptions | Data needed |
Estimating species richnessRepresentative, randomTwo or more columns, each
from several quadrat sam-quadrats of equal size containing presence/absen
ples (1/0) of different taxa down
the rows
Four non-parametric species richness estimators arediedlin PAST: Chao
2, first- and second-order jackknife, and bootstrap. Allhafse require presence-
absence data in two or more sampled quadrats of equal sikgelC& Coddington
(1994) reviewed these estimators, and found that the Chad2h&@ second-order
jackknife performed best.
Taxonomic distinctness
| Typical application | Assumptions | Data needed |
Quantifying  taxonomical Representative samples One or more columns, each
distinctness in samples containing counts of indi
viduals of different taxa

down the rows. In ad-
dition, the leftmost row(s
must contain names of ger
era/families etc. (see be
low).

Taxonomic diversity and taxonomic distinctness as define@larke & War-
wick (1998), including confidence intervals computed frod® 2andom replicates
taken from the pooled data set (all columns). Note that thabg list" of Clarke &
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Warwick is not entered directly, but is calculated intelynaly pooling (summing)

the given samples.

These indices depend on taxonomic information also abavailcies level,
which has to be entered for each species as follows. Spemieeago in the name
column (leftmost, fixed column), genus names in column 1,lfain column 2
etc. Species counts follow in the columns thereafter. Thgnam will ask for the
number of columns containing taxonomic information abdegpecies level.

For presence-absence data, taxonomic diversity and distiss will be valid

but equal to each other.

Compare diversities

[ Typical application

| Assumptions

| Data needed |

Comparing diversities in
two samples of abundang
data

e

Equal sampling conditions

Two columns of abundanc
data with taxa down the
rows

D

This module computes a number of diversity indices for twolas, and then
compares the diversities using two different randomiratimcedures as follows.

Bootstrapping

The two samples! and B are pooled. 1000 random pairs of samplds, B;) are
then taken from this pool (200 prior to version 0.87b), whik same numbers of
individuals as in the original two samples. For each repigair, the diversity in-
dicesdiv(A;) anddiv(B;) are computed. The number of tim@sv(A;) —div(B;)|
exceeds or equalgliv(A) — div(B)| indicates the probability that the observed
difference could have occurred by random sampling from @mend population as
estimated by the pooled sample.
A small probability valuep(equal) then indicates a significant difference in

diversity index between the

Permutation

two samples.

1000 random matrices with two columns (samples) are gestkratich with the
same row and column totals as in the original data matrix. pivedue is computed

as for the boostrap test.

Diversity t test

| Typical application

| Assumptions

| Data needed |

Comparing Shannon dive
sities in two samples of
abundance data

- Equal sampling conditions

Two columns of abundanc
data with taxa down the
rows

D
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Comparison of the Shannon diversities (entropies) in twopes, using a t
test described by Poole (1974). This is an alternative tordinelomization test
available in the Compare diversities module.

Note that the Shannon indices here include a bias corretgtiam(Poole 1974),
and may diverge slightly from the uncorected estimatesutatied elsewhere in
PAST, at least for small samples.

Diversity profiles

| Typical application

| Assumptions

| Data needed |

Comparing diversities in
two samples of abundang
data

Equal sampling conditions
e

Two columns of abundanc
data with taxa down the
rows

D

The validity of comparing diversities in two samples can bgcized because
of arbitrary choice of diversity index. One sample may foample contain a
larger number of taxa, while the other has a larger Shanraexint may therefore
be a good idea to try a number of diversity indices in order &kensure that
the diversity ordering is robust. A formal way of doing thésto define a family
of diversity indices, dependent upon a single continuousrpater (Tothmeresz

1995).

PAST uses the exponential of the so-called Renyi index, wtiépends upon a
parameter alpha. For alpha=0, this function gives the smaties number; alpha=1
gives an index proportional to the Shannon index, while @h2hgives an index
which behaves like the Simpson index.

In Zf:1 23

l—«

H =

)

wherep; are proportional abundances of individual taxa amlthe number of

species.

The program plots two such diversity profiles together. ¢fpnofiles cross, the
diversities are non-comparable.

Rarefaction

[ Typical application [

Assumptions

| Data needed |

Comparing taxonomical di
versity in samples of differ-
ent sizes

When comparing samples
Samples should be taxdg
nomically similar, obtained
using standardised samplin

and taken from a similar

5:Single column of counts o

'habitat’.

f
-individuals of different taxa

Given a column of abundance data for a number of taxa, thisime@stimates
how many taxa you would expect to find in a sample with a smaitat number of
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individuals. With this method, you can compare the numbeaxd in samples of
different size. Using rarefaction analysis on your largeshple, you can read out
the number of expected taxa for any smaller sample size. [Hoeitam is from
Krebs (1989). An example application in palaeontology carfdoind in Adrainet

al. (2000).

Let N be the total number of individuals in the sampiethe total number
of species, andV; the number of individuals of species numberThe expected
number of specie€(S,,) in a sample of sizex and the varianc& (S,,) are then

given by

V(Sn)
i=1

+ 2

j—1

j=2i=1

[(NnNi
(

)<1_(7

N—N;—N;
mn

N-—N;

(n

N
n

)(N;NJ')] @)

) ()

Standard errors (square roots of variances) are given bprigram. In the
graphical plot, these standard errors are converted to @®meconfidence inter-

vals.

Diversity curves

[ Typical application

| Assumptions

Data needed |

Plotting diversity curveg
from occurrence data

None

Abundance or prest

ence/absence matrix wit
samples in rows (lowes
sample at bottom) and tax

—~ 3

in columns

Found in the 'Strat’ menu, this simple tool allows plottinfdaversity curves
from occurrence data in a stratigraphical column. Note #aahples should be
in stratigraphical order, with the uppermost (youngesthga in the uppermaost
row. Data are subjected to the range-through assumptiseliabs between first
and last appearance are treated as presences). Origiatidrextinctions are in

absolute numbers, not percentages.

The "Endpoint correction’ option counts a FAD or LAD in a sdmjs 0.5
instead of 1 in that sample. Both FAD and LAD in the sample teas 0.33.
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10 Time series analysis

Spectral analysis

| Typical application | Assumptions | Data needed |

Finding periodicities in| Time series long enough toOne or two columns of
counted or measured data | contain at least four cycles| counted or measured data

Two columns must be selected &ndy values). Since palaeontological data
are often unevenly sampled, the FFT algorithm can be diffioulse. PAST there-
fore includes the Lomb periodogram algorithm for uneverdynpled data, with
time values given in the first column.

The frequency axis is in units of 1/(x unit). If for exampleuw = values are
given in millions of years, a frequency of 0.1 corresponda period of 10 million
years. The power axis is in units proportional to the squéiteeoamplitudes of the
sinusoids present in the data.

Also note that the frequency axis extends to very high valifggour data are
evenly sampled, the upper half of the spectrum is a mirrogerat the lower half,
and is of little use. If some of your regions are closely sadpthe algorithm may
be able to find useful information even above the half-pdiyquist frequency).

The highest peak in the spectrum is presented with its fregguand power
value, together with a probability that the peak could odtom random data.
The 0.01 and 0.05 significance levels ('white noise liness)shown as red dashed
lines.

You may want to remove any linear trend in the data (Edit mémfidre ap-
plying the Lomb periodogram. Failing to do so can produceogimy peaks at low
frequencies.

Autocorrelation

| Typical application | Assumptions | Data needed |
Finding periodicities in| Time series long enough tpOne column of counted of
counted or measured data | contain at least two cycles. measured data
Even spacing of data points.

Autocorrelation (Davis 1986) is carried out on separateirooi(s) of evenly
sampled temporal/stratigraphic data. Lag times up/t@, whereN is the num-
ber of values in the vector, are shown along thaxis (positive lag times only -
the autocorrelation function is symmetrical around zery)predominantly zero
autocorrelation signifies random data - periodicities wgras peaks.

The "95 percent confidence interval” option will draw linéplais/minusl.76 n%m
after Davis (1986). This is the confidence interval for ramngandependent points.
This module handles missing data, coded with question n{&#gs
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Cross-correlation

| Typical application | Assumptions | Data needed |
Finding an optimal align{ Even spacing of data points. Two columns of counted of
ment of two time series measured data

Cross-correlation (Davis 1986) is carried out on two colshof evenly sam-
pled temporal/stratigraphic data. Thexis shows the displacement of the second
column with respect to the first, theaxis the correlation between the two time
series for a given displacement. The "p values" option walwdthe significance
of the correlation, after Davis (1986).

Wavelet transform

| Typical application | Assumptions | Data needed |
Inspection of time series gt Even spacing of data points One column of counted of
different scales measured data

The continuous wavelet transform (CWT) is an analysis nttthibere a data
set can be inspected at small, intermediate and large sialettaneously. It can
be useful for detecting periodicities at different wavefdrs, self-similarity and
other features. The vertical axis in the plot is a logarithisize scale, with the
signal observed at a scale of only two consecutive data gainthe bottom, and
at a scale of one fourth of the whole sequence at the top. Om@mithis axis
corresponds to a doubling of the size scale. The bottom dighee thus represents
a detailed, fine-grained view, while the top represents aosined overview of
longer trends. Signal energy (or more correctly corretasivength with the scaled
mother wavelet) is shown with a grayscale.

The shape of the mother wavelet can be set to Morlet, Gaussnobi®ro. The
Morlet wavelet usually performs best.

The algorithm is based on fast convolution of the signal wlith wavelet at
different scales, using the FFT.

The wavelet transform was used by Prokoph et al. (2000)lftiating cycles
in diversity curves for planktic foraminiferans.

Walsh transform

ypical application ssumptions ata neede

Typical licati A i D ded
Spectral analysis (finding Even spacing of data points One column of binary (0/1
periodicities) of binary or or ordinal (integer) data
ordinal data

The normal methods for spectral analysis are perhaps nimhalpfor binary
data, because they decompose the time series into sinusdigs than "square
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waves". The Walsh transform may then be a better choicegussis functions
that flip between -1 and +1. These basis functions have diftéifrequencies”
(number of transitions divided by two), known segjuencies. In PAST, each pair
of even ("cal") and odd ("sal") basis functions (one pair dach integer-valued
sequency) is combined into a power value usialf + sal?, producing a "power
spectrum” that is comparable to the Lomb periodogram.

Note that the Walsh transform is slightly "exotic" compaieith the Fourier
transform, and its interpretation must be done cautiouslgr example, the ef-
fects of the duty cycle (percentage of ones versus zerosoanewhat difficult to
understand.

In PAST, the data values are pre-processed by multiplyirg two and sub-
tracting one, bringing 0/1 binary values into the -1/+1 gtimal for the Walsh
transform.

Runs test
| Typical application Assumptions | Data needed |
Testing for randomness in pNone One column containing
time series time series. The values are
converted to 0 £<0) or 1
(z > 0).

The runs test is a non-parametric test for randomness inwenregq of values.
Non-randomness may include such effects as autocornmelatend and periodicity.

The test is based on a dichotomy between two valug$ (©r = > 0). It counts
the number of runs (groups of consecutive equal values) amgbares this to a the-
oretical value. The runs test can therefore be used dirmtlyequences of binary
data. Continuous data can be converted to an appropriatelfgrsubtracting the
mean (Transform menu), or taking the difference from onee/ab the next (use
"x-u" in the Evaluate Expression function).
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11 Geometrical analysis

Directional analysis

| Typical application | Assumptions | Data needed |
Displaying and testing for See below One column of directiona|
random distribution of di- data in degrees (0-360)
rectional data

Plots a rose diagram (polar histogram) of directions gimeméolumn of degree
values (0 to 360). Used for plotting current-oriented specis, orientations of
trackways, orientations of morphological features (eegiace lines), etc.

By default, the 'mathematical’ angle convention of antidaise from east is
chosen. If you use the 'geographical’ convention of clodemirom north, tick the
box.

You can also choose whether to have the abundances pro@brtoradius in
the rose diagram, or proportional to area (equal area).

The mean angle, together with tievalue (Rayleigh’s spread), are given:

n 2 n 2
R= J (Zl cos 9i> + <Zl sin 9i> (4)

Ris further tested against a random distribution using Ralyle test for direc-
tional data (Davis 1986). Note that this procedure assuweshyeor unimodally
distributed data - the test is not appropriate for bidiew data. Also, the test is
not accurate forvV>200; it will then report a too higlp value.

A four-bin Chi-square test is also available, giving thehadoility that the di-
rections are randomly and evenly distributed.

Point distribution

| Typical application | Assumptions | Data needed |
Testing for clustering of Elements small compared toTwo columns ofx/y posi-
overdispersion of two4 their distances, mainly cor- tions

dimensional position values vex domain, N>50.

Point distribution statistics using nearest neighbounyaim (modified from
Davis 1986). The area is estimated either by the smallesbsing rectangle or
using the convex hull, which is the smallest convex polygodasing the points.
Both are inappropriate for points in very concave domaingo different edge ef-
fect adjustment methods are available: wrap-around &tpand Donnelly’s cor-
rection.

The probability that the distribution is random (Poissoogass, giving an ex-
ponential nearest neighbour distribution) is presentegkther with theR value:
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2d
A/N’

whered is the observed mean distance between nearest neighbbisghe
area of the convex hull, anll is the number of points. Clustered points g1,
Poisson patterns give 1, while overdispersed points give>1.

Applications of this module include spatial ecology (aresitu brachiopods
clustered) and morphology (are trilobite tubercles osgeised).

Multivariate allometry

[ Typical application

| Assumptions

| Data needed

Finding and testing for al
lometry in a multivariate
morphometric data set

None

A multivariate data set with
variables (distance measur
ments) in columns, spec

mens in rows.

This advanced method for investigating allometry in a matiate data set
is based on Jolicoeur (1963) with extensions by Kowalewskil.e (1997). The
data are (automatically) log-transformed and subjectd®A. The first principal
component (PC1) is then regarded as a size axis (this is atily i the variation
accounted for by PC1 is large, say more than 80 percent). lltmeedric coefficient
for each original variable is estimated by dividing the P@dding for that variable
by the mean PC1 loading over all variables.

95 percent confidence intervals for the allometric coeffitieare estimated by
bootstrapping specimens. 2000 bootstrap replicates ade.ma

Missing data are supported by column average substitution.

Fourier shape analysis

| Typical application

| Assumptions

| Data needed

Analysis of fossil outline
shape (2D)

Shape expressible in pols
coordinates, sufficient num
ber of digitized points tg
capture features.

arDigitized 2/y coordinates

-around an outline. Spec
mens in rows, coordinates g
alternatingr andy values in
columns (see Procrustes fi
ting below).

=9

AcceptsX — Y coordinates digitized around an outline. More than oneshap
(row) can be simultaneously analyzed. Points do not neeckttotally evenly
spaced. The shape must be expressible as a unique funcfimainco-ordinates,
that is, any straight line radiating from the centre of theghmust cross the outline

only once.
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The origin for the polar coordinate system is found by nuoa@pproximation
to the centroid. 128 points are then produced at equal angugements around
the outline, through linear interpolation. The centroidhien re-computed, and
the radii normalized (size is thus removed from the analy3ike cosine and sine
components are given for the first ten harmonics, but noteotiig V/2 harmonics
are 'valid’, whereN is the number of digitized points. The coefficients can be
copied to the main spreadsheet for further analysis (e.§.@%).

The 'Shape view’ window allows graphical viewing of the Feurshape ap-

proximation(s).

Elliptic Fourier shape analysis

[ Typical application

| Assumptions

| Data needed

Analysis of fossil outline
shape

Sufficient number of digi-
tized points to capture fed
tures.

Digitized z/y coordinates
-around an outline. Spec
mens in rows, coordinates g
alternatingr andy values in
columns (see Procrustes fi

=

ting below).

More than one shape (row) can be simultaneously analyzed.

Elliptic Fourier shape analysis is in some respects sup&isimple Fourier
shape analysis. One advantage is that the algorithm catehemplicated shapes
which may not be expressible as a unique function in polaordinates. Elliptic
Fourier shapes is now a standard method of outline analy$is.algorithm used
in PAST is described in Ferson et al. (1985).

Cosine and sine components ofand y increments along the outline for the
first 10 harmonics are given, but only the fi8%/2 harmonics should be used,
where N is the number of digitized points. Size and positional ti@ien are
normalized away, and do not enter in the coefficients. Howexeattempt is made
to standardize rotation or starting point, so all specinsr®ild be measured in a
standard orientation. The coefficients can be copied to thie spreadsheet for
further analysis (e.g. by PCA).

The 'Shape view' window allows graphical viewing of the plic Fourier

shape approximation(s).

Eigenshape analysis

[ Typical application

| Assumptions

Data needed

Analysis of fossil outline
shape

Sufficient number of digi-
tized points to capture fed
tures.

|
Digitized z/y coordinates
-around several outlines.
Specimens in rows, coord
nates of alternatinge and
y values in columns (se
Procrustes fitting below).

D
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Eigenshapes are principal components of outlines. Théesgabt of outlines
in principal component space can be shown, and linear catibirs of the eigen-
shapes themselves can be visualized.

The implementation in PAST is partly based on MacLeod (199)finds
the optimal number of equally spaced points around thermutlising an itera-
tive search, so the original points need not be equally shadée eigenanaly-
sis is based on the covariance matrix of the non-normaligedrty angle incre-
ments around the outlines. The algorithm does not assumesadticurve, and
the endpoints are therefore not constrained to coincidegmegconstructed shapes.
Landmark-registered eigenshape analysis is not inclutligdutlines must start at
the 'same’ point.

Procrustes and Bookstein fitting (2D or 3D)

| Typical application | Assumptions | Data needed
Standardization of morphg- None Digitized z/y or z/y/z
metrical landmark coordi landmark coordinates.
nates Specimens in rows, coO

ordinates of alternatinge
andy (or z/y/z) values in
columns.

The Procrustes option in the Transform menu will transformarymeasured
coordinates to Procrustes coordinates. There is also a olayice for Bookstein
coordinates. Specimens go in different rows and landmaddkgyaach row. If you
have three specimens with four landmarks, your data shooklds follows:

x1 yl x2 y2 x3 y3 x4 vy4
x1 yl x2 y2 x3 y3 x4 vy4
x1 yl x2 y2 x3 y3 x4 vy4

For 3D the data will be similar, but with additional columms £.

Landmark data in this format could be analyzed directly il multivariate
methods in PAST, but it is recommended to standardize t@beecProcrustes co-
ordinates by removing position, size and rotation. A furtihensformation to Pro-
crustes residuals (approximate tangent space coordjnatashieved by selecting
'Subtract mean’ in the Edit menu. Note: You must always cadnie Procrustes
coordinates first, then to Procrustes residuals.

Here is a typical sequence of operations for landmark aisalys

e Conversion of measured coordinates to Procrustes cotedina

e Conversion of Procrustes coordinates to Procrustes m@sidihis must not
be done before Thin-plate Spline Transformation or Shapk &@lysis, see
below).

¢ Multivariate analysis of tangent space coordinates, wigh BCA or cluster
analysis.
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A thorough description of Procrustes and tangent spaceltwtes is given
by Dryden & Mardia (1998). Algorithms for Procrustes fittinge as given in this
reference (a closed-form algorithm for 2D, an iterativeoalthm for 3D).

Bookstein fitting has a similar function as Procrustes fittinut simply stan-
dardizes size, rotation and scale by forcing the two firstmaarks onto the coor-
dinates (0,0) and (1,0). It is not in common use today. Baokditting is only
implemented for 2D.

Missing data are supported by column average substitution.

Shape PCA

This is an option in the Principal Components module (Maltinenu). PCA on
landmark data can be carried out as normal PCA analysis atruates residu-
als for 2D or 3D (see above), but for 2D landmark data somedutictionality
is available in the PCA module by choosing Shape PCA. Thearsian to Pro-
crustes residuals is then done automatically, so your dasd be Procrustes fitted,
but not with subtracted mean. The var-covar option is eefthrand the 'Shape
deform (2D)’ button enabled. This allows you to view the thsgment of land-
marks from the mean shape (plotted as points or symbols)iditiection of the
different principal components, allowing interpretatiohthe components. The
displacements are plotted as lines (vectors).

Another implementation of Shape PCA is available under tRel&Varps (see
below), by setting the parametalipha to zero.

Thin-plate spline transformation grids

| Typical application | Assumptions | Data needed |
Visualization of shape None Digitized z/y landmark co-
change ordinates.  Specimens in

rows, coordinates of alten
nating x and y values in
columns. Procrustes stamn
dardization recommended.

The first specimen (first row) is taken as a reference, withsan@ated square
grid. The warps from this to all other specimens can be viewdolu can also
choose the mean shape as the reference.

The 'Expansion factors’ option will display the area expangor contraction)
factor around each landmark in yellow numbers, indicating degree of local
growth. This is computed using the Jacobian of the warp. Alse expansions
are colour-coded for all grid elements, with green for exgi@am and purple for
contraction.

At each landmark, the principal strains can also be showth, tiwé major strain
in black and minor strain in brown. These vectors indicatedadional stretching.
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A description of thin-plate spline transformation gridsgigen by Dryden &
Mardia (1998).

Partial warps

From the thin-plate spline window, you can choose to see #éntiap warps for a
particular spline deformation. The first partial warp wépresent some long-range
(large scale) deformation of the grid, while higher-ordearps will normally be
connected with more local deformations. The affine compbogthe warp (also
known as zeroth warp) represents linear translation,regalotation and shearing.
In the present version of PAST you can not view the principatps.

When you increase the magnification factor from zero, thgimai landmark
configuration and a grid will be progressively deformed aditw to the selected
partial warp.

Partial warp scores

From the thin-plate spline window, you can also choose totlsegartial warp
scores of all the specimens. Each partial warp score hasdmwpaenents £ and
y), and the scores are therefore presented in scatter plots.

Relative warps

| Typical application | Assumptions Data needed |
Ordination of a set of shapgsNone Digitized «/y landmark co-
ordinates.  Specimens i
rows, coordinates of alten
nating  and y values in
columns. Procrustes stamn
dardization recommended.

=}

The relative warps can be viewed as the principal componatise set of
thin-plate transformations from the mean shape to eachec$tthhpes under study.
It provides an alternative to direct PCA of the landmark® (Shape PCA above).

The parameter alpha can be set to one of three values:

¢ alpha=-1 emphasizes small-scale variation.

e alpha=0 is PCA of the landmarks directly, and is equivalent to Shaé P
(see above) of the non-affine part of shape variation.

¢ alpha=1 emphasizes large-scale variation.

The relative warps are ordered according to importance tranéirst and sec-
ond warps are usually the most informative. Note that thegrgage values of the
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eigenvalues are relative to the total non-affine part ofidwesformation - the affine
part is not included.

The relative warps are visualized with thin-plate splirensformation grids.
When you increase or decrease the amplitude factor away Zewvm the original
landmark configuration and grid will be progressively defed according to the
selected relative warp.

The relative warp scores of pairs of consecutive relativepgr@an shown in
scatter plots, and all scores can be shown in a numericaixmatr

The algorithm for computing the relative warps is taken fidrgden & Mardia
(1998).

Size from landmarks (2D or 3D)

| Typical application | Assumptions | Data needed
Size estimation from landf None Digitized z/y or z/y/z
marks landmark coordinates.

xz and y (and z for 3D)

normalized for size!

Specimens in rows, coO
ordinates with alternating

values in columns. Mus
not be Procrustes fitted d

)

[

=

Calculates the centroid size for each specimen (Euclidean of the distances
from all landmarks to the centroid).

The values in the 'Normalized’ column are centroid sizesddit by the square
root of the number of landmarks - this might be useful for canmng specimens
with different numbers of landmarks.

Normalize size

The 'Normalize size’ option in the Transform menu allows youremove size
by dividing all coordinate values by the centroid size focteapecimen. For 2D
data you may instead use Procrustes coordinates, whichsar@@malized with
respect to size.

See Dryden & Mardia (1998), p. 23-26.
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Distance from landmarks (2D or 3D)

| Typical application Assumptions | Data needed |
Calculating distances None Digitized x/y or z/y/z
between two landmarks landmark coordinates.

Specimens in rows, coof
dinates with alternatinge
andy (andz for 3D) values
in columns. May or may
not be Procrustes fitted g
normalized for size.

=

Calculates the Euclidean distances between two fixed laricirfar one or
many specimens. You must choose two landmarks - these arednaenording to
the name of the first column for the landmaikvalue).

All distances from landmarks (EDMA)

| Typical application | Assumptions | Data needed |
Calculating distances be-None Digitized z/y or z/y/z
tween all pairs of landmarks landmark coordinates.

Specimens in rows, cool
dinates with alternatinge
andy (andz for 3D) values
in columns. May or may
not be Procrustes fitted g
normalized for size.

=

This function will replace the landmark data in the data iratrith a data
set consisting of distances between all pairs of landmavkhk, one specimen per
row. The number of pairs is N(N-1)/2 for N landmarks. Thisgtormation will
allow multivariate analysis of distance data, which aresestsitive to rotation or
translation of the original specimens, so a Procrustesditti not mandatory before
such analysis. Using distance data also allows log-tramsftion, and analysis of
fit to the allometric equation for pairs of distances.

Missing data are supported by column average substitution.

Landmark linking

This function in the Geomet menu allows the selection of aaiyspof landmarks
to be linked with lines in the morphometric plots (thin-g@atplines, partial and
relative warps, etc.), to improve readability. The landksanust be present in the
main spreadsheet before links can be defined.

Pairs of landmarks are selected or deselected by clickitigeisymmetric ma-
trix. The set of links can also be saved in a text file. Note thate is little error
checking in this module.
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Burnaby size removal

This function in the Transform menu will project your muétivate data set of mea-
sured distances onto a space orthogonal to the first prircpgponent. Burnaby's
method may (or may not!) remove isometric size from the datafurther "size-
free" data analysis. The "Allometric" option will log-trsform the data prior to
projection, thus conceivably removing also allometriesiependent shape varia-
tion from the data. Note that the implementation in PAST dustscenter the data
within groups - it assumes that all specimens (rows) belorane group.

Gridding (spatial interpolation)

| Typical application | Assumptions | Data needed |
Spatial interpolation of scat- Some degree of smoothnesgsThree columns with positio
tered data points onto a reg- (x,y) and corresponding da
ular grid values

Gridding (spatial interpolation) allows the productionaafnap showing a con-
tinuous spatial estimate of some variate such as fossild#nae or thickness of a
rock unit, based on scattered data points. The user carfspieeisize of the grid
(number of rows and columns), but in the present version plaéad coverage of
the map is generated automatically based on the positiodatafpoints (the map
will always be square).

A least-squares linear surface (trend) is automaticaltgdito the data, re-
moved prior to gridding and finally added back in. This is iity useful for the
semivariogram modelling and the kriging method.

Three algorithms are available:

Moving average

The value at a grid node is simply the average of Melosest data points, as
specified by the user (the default is to use all data point$le fdoints are given
weight in inverse proportion to distance. This algorithnsiisiple and will not
always give good (smooth) results. One advantage is thahtégolated values
will never go outside the range of the data points.

Thin-plate spline

Maximally smooth interpolator. Can overshoot in the preseof sharp bends in
the surface.

Kriging

This advanced method is implemented in a simple version ®TPAhe user is re-
quired to specify a model for the semivariogram, by choosing of three models
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(spherical, exponential or Gaussian) and correspondirapeters to fit the empir-
ical semivariances as well as possible. See e.g. Davis 88 ore information.
The kriging procedure also provides an estimate of stanelaais across the map
(this depends on the semivariogram model being accurat@in§ in PAST does
not provide for anisotropic semivariance.
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12 Cladistics

| Typical application | Assumptions | Data needed |
Semi-objective analysis of Many! See Kitchinet al. | Character matrix with taxg
relationships between taxa(1998) in rows, outgroup in first
from morphological or ge- row. For calculation of
netic evidence stratigraphic congruence in

dices, first and last appea
ance datums must be give
in the first two columns.

Warning: the cladistics package in PAST is fully operatlpait lacking in
comprehensive functionality. The heuristic algorithmersenot to perform quite
as well as in some other programs (this is being looked ifitbg PAST cladistics
package is adequate for education and initial data exjmorabut for more 'se-
rious’ work we recommend a specialized program such as PAld@rithms are
from Kitchin et al. (1998).

Parsimony analysis

Character states should be coded using integers in the fatm@55. The first
taxon is treated as the outgroup, and will be placed at thieofdbe tree.

Missing values are coded with a question mark (?) or the vdluPlease note
that PAST does not collapse zero-length branches. Becdtisis,anissing values
can lead to a proliferation of equally shortest trees adesus many of which are
in fact equivalent.

There are four algorithms available for finding short trees:

Branch-and-bound

The branch-and-bound algorithm is guaranteed to find alitebbtrees. The total
number of shortest trees is reported, but a maximum of 1@ tare saved. You
should not use the branch-and-bound algorithm for dataveigtsmore than 12

taxa.

Exhaustive

The exhaustive algorithm evaluates all possible treese thik branch-and-bound
algorithm it will necessarily find all shortest trees, busivery slow. For 12 taxa,
more than 600 million trees are evaluated! The only advantagr branch-and-
bound is the plotting of tree length distribution. This btam may indicate the
‘quality’ of your matrix, in the sense that there should baiktb the left such that
few short trees are ’isolated’ from the greater mass of lotrges (but see Kitchin
et al. 1998 for critical comments on this). For more than &take histogram is
based on a subset of tree lengths and may not be accurate.
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Heuristic, nearest neighbour interchange

This heuristic algorithm adds taxa sequentially in the ptlley are given in the
matrix, to the branch where they will give least increasade length. After each
taxon is added, all nearest neighbour trees are swappgadttdiind an even shorter
tree.

Like all heuristic searches, this one is much faster tharaterithms above
and can be used for large numbers of taxa, but is not guachtudiad all or any of
the most parsimonious trees. To decrease the likelihooddhg up on a subopti-
mal local minimum, a number of reorderings can be specifiede&ch reordering,
the order of input taxa will be randomly permutated and agotteuristic search
attempted.

Please note: Because of the random reordering, the trees found by théskieur
searches will normally be different each time. To reprodasearch exactly, you
will have to start the parsimony module again from the mesingithe same value
for "Random seed". This will reset the random number geoetatthe seed value.

Heuristic, subtree pruning and regrafting

This algorithm (SPR) is similar to the one above (NNI), buthxa more elaborate
branch swapping scheme: A subtree is cut off the tree, amdfteg onto all other

branches in the tree is attempted in order to find a shorter ffais is done after
each taxon has been added, and for all possible subtreese Slthwer than NNI,

SPR will often find shorter trees.

Heuristic, tree bisection and reconnection

This algorithm (TBR) is similar to the one above (SPR), buthvan even more
complete branch swapping scheme. The tree is divided inboptavts, and these
are reconnected through every possible pair of brancheslar ¢o find a shorter
tree. This is done after each taxon is added, and for all plesdivisions of the

tree. TBR will often find shorter trees than SPR and NNI, atabst of longer

computation time.

Character optimization criteria

Three different optimization criteria are availiable:

Wagner

Characters are reversible and ordered, meaning that 0stg mmre than 0->1, but
has the same cost as 2->0.
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Fitch

Characters are reversible and unordered, meaning thataaibes have equal cost.
This is the criterion with fewest assumptions, and is trareeenerally preferable.

Dollo

Characters are ordered, but acquistition of a character §am lower to higher
value) can happen only once. All homoplasy is accountedy@etzondary rever-
sals. Hence, 0->1 can only happen once, normally relatigiglge to the root of
the tree, but 1->0 can happen any number of times further upeirtree. (This
definition has been debated on the PAST mailing list, esjicidether Dollo

characters need to be ordered).

Bootstrap

Bootstrapping is performed when the 'Bootstrap replicatalsie is set to non-zero.
The specified number of replicates (typically 100 or even0)@d your character
matrix are made, each with randomly weighted characters.bbotstrap value for
a group is the percentage of replicates supporting thatpgraueplicate supports
the group if the group exists in the majority rule consenses of the shortest trees
made from the replicate.

Warning: Specifying 1000 bootstrap replicates will clgagive a thousand
times longer computation time than no bootstrap! Exhaest®arch with boot-
strapping is unrealistic and is not allowed.

Cladogram plotting

All shortest (most parsimonious) trees can be viewed, uprtagimum of 1000
trees. If bootstrapping has been performed, a bootstra valpercents is given
at the root of the subtree specifying each group.

Character states can also be plotted onto the tree, asesblpcthe 'Character’
buttons. This character reconstruction is unique only énahsence of homoplasy.
In case of homoplasy, character changes are placed as altbserbot as possible,
favouring one-time acquisition and later reversal of a abt@r state over several
independent gains (so-calledcelerated transformation).

Consistency index

The per-character consistency indeX) (s defined asn/s, wherem is the mini-

mum possible number of character changes (steps) on anatrée is the actual
number of steps on the current tree. This index hence vaoes éne (no homo-
plasy) and down towards zero (a lot of homoplasy). The enkednsistency
indexCT is a similar index summed over all characters.
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Retention index

The per-character retention index (ri) is defined(@s- s)/(g — m), wherem
ands are as for the consistency index, whilés the maximal number of steps for
the character on any cladogram (Farris 1989). The reteimidex measures the
amount of synapomorphy on the tree, and varies from 0 to 1.

Consensus tree

The consensus tree of all shortest (most parsimoniousy trae also be viewed.
Two consensus rules are implemented: Strict (groups musupported by all
trees) and majority (groups must be supported by more thapebfent of the
trees).

Bremer support (decay index)

The Bremer support for a clade is the number of extra stepsged to construct a
tree (consistent with the characters) where that cladelisnger present. There are
reasons to prefer this index rather than the bootstrap vBRWET does not compute
Bremer supports directly, but for smaller data sets it camdmee 'manually’ as
follows:

e Perform parsimony analysis with exhaustive search or bramc-bound.
Take note of the clades and the lengfiof the shortest tree(s) (for example
42). If there are more than one shortest tree, look at thet stonsensus
tree. Clades which are no longer found in the consensus éneedBremer
support value of 0.

¢ Inthe box for 'Longest tree kept’, enter the numBé#-1 (43 in our example)
and perform a new search.

e Additional clades which are no longer found in the strictsemsus tree have
a Bremer support value of 1.

e For 'Longest tree kept’, enter the numhar + 2 (44) and perform a new
search. Clades which now disappear in the consensus treeahBrvemer
support value of 2.

e Continue until all clades have disappeared.

Stratigraphic congruence indices

For calculation of stratigraphic congruence indices, th& fivo columns in the
data matrix must contain the first and last appearance datgsgectively, for
each taxon. These datums must be given such that the yousngegor highest
stratigraphic level) has the highest numerical value. Yay meed to use negative

58



values to achieve this (e.g. 400 million years before presecoded as -400.0).
The box "FADs/LADs in first columns" in the Parsimony dialegmust be ticked.

The Stratigraphic Congruence Index (SCI) of Huelsenbe8R4}is defined as
the proportion of stratigraphically consistent nodes andladogram, and varies
from O to 1. A node is stratigraphically consistent when tlikest first occurrence
above the node is the same age or younger than the first oecarcé its sister
taxon (node).

The Relative Completeness Index (RCI) of Benton & Storr®4)9s defined
as(1—-MIG/SRL)x100 percent, where MIG (Minimum Implied Gap) is the sum
of the durations of ghost ranges and SRL is the sum of theidosabf observed
ranges. The RCI can become negative, but will normally veoynfO to 100.

The Gap Excess Ratio (GER) of Wills (1999) is definedlas (MIG —
Gmin)/(Gmaz — Gmin) WhereG,,;, is the minimum possible sum of ghost ranges
on any tree (that is, the sum of distances between succd3sibs), andG,,,.. is
the maximum (that is, the sum of distances from first FAD t@#ier FADS).

These indices are further subjected to a permutation tdstrenall dates are
randomly redistributed across the different taxa 1000 sim&he proportion of
permutations where the recalculated index exceeds thimakigdex is given. If
small (e.g. p<0.05), this indicates a statistically siguwifit departure from the null
hypothesis of no congruency between cladogram and saptigr(in other words,
you have significant congruency). The permutation prolissilof RClI and GER
are equal for any given set of permutations, because thepam®ed on the same
value for MIG.
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13 Biostratigraphy

Unitary associations

| Typical application | Assumptions | Data needed |
Quantitative biostratigraphit None Presence/absence (1/0) m
cal correlation trix with horizons in rows,

taxa in columns

Unitary Associations analysis (Guex 1991) is a method fostpatigraphical
correlation (see Angiolini & Bucher 1999 for a typical apatiion). The data input
consists of a presence/absence matrix with samples in mod/$axa in columns.
Samples belonging to the same section (locality) are taggtdthe same color,
and ordered stratigraphically within each section suchttirelowermost sample is
entered in the lowest row. Colours can be re-used in datanstttdarge numbers
of sections (see alveolinid.dat for an example).

Overview of the method

The method of Unitary Associations is logical, but rathempticated, consisting
of a number of steps. For details, see Guex 1991. The implati@min PAST in-
cludes most of the features found in the standard progratedd@ioGraph (Savary
& Guex 1999), and thanks to a fruitful co-operation with J€arex it also includes
a number of options and improvements not found in the presgsion of that pro-
gram.

The basic idea is to generate a number of assemblage zomég($0 'Oppel
zones’) which are optimal in the sense that they give maxstratigraphic reso-
lution with a minimum of superpositional contradictionsné®example of such a
contradiction would be a section containing a species A alzospecies B, while
assemblage 1 (containing species A) is placed below asagmid (containing
species B). PAST (and BioGraph) carries out the followirgpst
1. Residual maximal horizons

The method makes the range-through assumption, meanintaiaaare con-
sidered to have been present at all levels between the fustahappearance in
any section. Then, any samples with a set of taxa that is ic@atan another sam-
ple are discarded. The remaining samples are called résitaxmal horizons.
The idea behind this throwing away of data is that the abseat in the discarded
samples may simply not have been found even though theyaligiexisted. Ab-
sences are therefore not as informative as presences.

2. Superposition and co-occurrence of taxa

Next, all pairs (A,B) of taxa are inspected for their supsitonal relation-
ships: A below B, B below A, A together with B, or unknown. If Acurs below
B in one locality and B below A in another, they are considerelle co-occurring
although they have never actually been found together.
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The superpositions and co-occurrences of taxa can be viewtad biostrati-
graphic graph. In this graph, taxa are coded as numbers. Co-occurrentasdre
pairs of taxa are shown as solid blue lines. Superpositimmsteown as dashed red
lines, with long dashes from the above-occurring taxon dnmitslashes from the
below-occurring taxon.

Some taxa may occur in so-called forbidden sub-graphs,hwhdicate incon-
sistencies in their superpositional relationships. Twdhef several types of such
sub-graphs can be plotted in PAST,; cycles, which are superpositional cycles (A-
>B->C->A), andSjs circuits, which are inconsistencies of the type 'A co-ocity
with B, C above A, and C below B'. Interpretation of such faidén sub-graphs is
described by Guex (1991).

3. Maximal cliques

Maximal cliques are groups of co-occurring taxa not comdiim any larger
group of co-occurring taxa. The maximal cliques are carid&léor the status of
unitary associations, but will be further processed beloWPAST, maximal cliques
receive a number and are also named after a maximal horizttre iariginal data
setwhich is identical to, or contained in (marked with dstgr the maximal clique.
4. Superposition of maximal cliques

The superpositional relationships between maximal clicare decided by in-
specting the superpositional relationships between tiwistituent taxa, as com-
puted in step 2. Contradictions (some taxa in clique A ocalow some taxa in
clique B, and vice versa) are resolved by a 'majority voteheTcontradictions
between cliques can be viewed in PAST.

The superpositions and co-occurrences of cliques can bedim the maximal
clique graph. In this graph, cliques are coded as number@cCarrences between
pairs of cliques are shown as solid blue lines. Superpaositasze shown as dashed
red lines, with long dashes from the above-occurring cligig short dashes from
the below-occurring clique. Also, cycles between maxiniigues (see below) can
be viewed as green lines.

5. Resolving cycles

It will sometimes be the case that maximal cliques are nowredlin cycles: A
is below B, which is below C, which is below A again. This isarlg contradictory.
The 'weakest link’ (superpositional relationship suppdrby fewest taxa) in such
cycles is destroyed.

6. Reduction to unique path

At this stage, we should ideally have a single path (chairgupierpositional
relationships between maximal cliques, from bottom to s is however often
not the case, for example if A and B are below C, which is belgwDf we have
isolated paths without any relationships (A below B and @WwdD). To produce a
single path, it is necessary to merge cliques accordingedoiaprules.

7. Post-processing of maximal cliques

Finally, a number of minor manipulations are carried outgtolish’ the result:
Generation of the 'consecutive ones’ property, reinsertbresidual virtual co-
occurrences and superpositions, and compaction to removegenerated non-
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maximal cliques. For details on these procedures, see A8 At last, we now
have the Unitary Associations, which can be viewed in PAST.

The unitary associations have associated with them an ioidgrnilarity from
one UA to the next, called:

D, = ’[]AZ — UAZ_l‘/‘UAZ’ + ’UAz‘—l — UAZ‘/‘UAz—ﬂ

8. Correlation using the Unitary Associations

The original samples are now correlated using the unitessg@ations. A sam-
ple may contain taxa which uniquely places it in a unitaryoaigion, or it may
lack key taxa which could differentiate between two or manéary associations,
in which case only a range can be given. These correlationbeegiewed in PAST.
9. Reproducibility matrix

Some unitary associations may be identified in only one omaskections, in
which case one may consider to merge unitary associatiomapmve the geo-
graphical reproducibility (see below). The reproductilmatrix should be in-
spected to identify such unitary associations. A UA whictirigjuely identified in
a section is shown as a black square, while ranges of UAs¥as @i the correla-
tion list) are shown in gray.
10. Reproducibility graph and suggested UA merges (biozonian)

The reproducibility graph (Gk’ in Guex 1991) shows supeigmss of unitary
associations that are actually observed in the sectionSTRll internally reduce

this graph to a uniqgue maximal path (Guex 1991, section p.&r@l in the process

of doing so it may merge some UAs. These mergers are showml dises in the

reproducibility graph. The sequence of single and merged té#h be viewed as a

suggested biozonation.

Special functionality

The implementation of the Unitary Associations method irsPAncludes a num-
ber of options and functions which have not yet been destiibehe literature.
For questions about these, please contact us.

Ranking and Scaling

| Typical application | Assumptions | Data needed |

Quantitative biostratigraphit None Table of depths, with wells

cal correlation in rows and events in
columns

Ranking-Scaling (Agterberg & Gradstein 1999) is a methadgfeantitative

biostratigraphy based avents in a number of wells or sections. The data input

consists of wells in rows with one well per row, and eventg.(eFADs and/or
LADS) in columns. The values in the matrix are depths of eagntin each
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well, increasing upwards (you may want to use negative galaeachieve this).
Absences are coded as zero. If only the order of events isknitng can be coded
as increasing whole numbers (ranks, with possible ties deoacurring events)
within each well.

The implementation of ranking-scaling in PAST is not conmeresive, and
advanced users are referred to the RASC and CASC programgtefb&rg and
Gradstein.

Overview of the method

The method of Ranking-Scaling proceeds in two steps:
1. Ranking

The first step of Ranking-Scaling is to produce a single, aefmgnsive strati-
graphic ordering of events, even if the data contains cdidiians (event A over
B in one well, but B over A in another), or longer cycles (A oi&over C over A).
This is done by 'majority vote’, counting the number of timesch event occurs
above, below or together with all others. Technically, thiachieved by "presort-
ing" followed by the Modified Hay Method (Agterberg & Gradstd999).

2. Scaling

The biostratigraphic analysis may end with ranking, buttéatthl insight may
be gained by estimating stratigraphic distances betweercdhsecutive events.
This is done by counting the number of observed superpaoattielationships (A
above or below B) between each pair (A,B) of consecutive tsveh low number
of contradictions implies long distance.

Some computed distances may turn out to be negative, inuictitat the or-
dering given by the ranking step was not optimal. If this rep the events are
re-ordered and the distances re-computed in order to emsiyepositive inter-
event distances.

RASC in PAST

Parameters

Well threshold: The minimum number of wells in which an event must occur
in order to be included in the analysis

Pair threshold: The minimum number of times a relationship between events
A and B must be observed in order for the pair (A,B) to be inetlith the ranking
step

Scaling threshold: Pair threshold for the scaling step

Tolerance: Used in the ranking step (see Agterberg & Gradstein)
Ranking

The ordering of events after the ranking step is given, withfirst event at the
bottom of the list. The "Range" column indicates uncertaintthe position.
Scaling
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The ordering of the events after the scaling step is giveth thie first event
at the bottom of the list. For an explanation of all the colgisee Agterberg &

Gradstein (1999).
Event distribution

A plot showing the number of events in each well, with the welidered ac-

cording to number of events.
Scattergrams

For each well, the depth of each event in the well is plotteadresy the optimum
sequence (after scaling). Ideally, the events should plahiascending sequence.

Dendrogram

Plot of the distances between events in the scaled sequechealing a den-

drogram which may aid in zonation.

Constrained Optimization (CONOP)

| Typical application | Assumptions

Data needed |

Quantitative biostratigraphi- None
cal correlation

Table of depths/levels, with
wells/sections in rows an

event pairs in columnsf

FADs in odd columns ang
LADs in even columns|
Missing events are code

with zeros.

N

|

PAST includes a simple version of Constrained Optimizatiéemple et al.
1989). Both FAD and LAD of each taxon must be specified in alts columns.
Using so-called Simulated Annealing, the program searétrea global (com-
posite) sequence of events that implies a minimal total amnofurange extension
(penalty) in the individual wells/sections. The paramgfer the optimization pro-
cedure include an initial annealing temperature, the nurabeooling steps, the
cooling ratio (percentage lower than 100), and the numbérial§ per step. For
explanation and recommendations, see Kemple et al. 1989.

Output windows include the optimization history with thentgerature and
penalty as function of cooling step, the global compositatgm and the implied
ranges in each individual section.

The implementation of CONOP in PAST is based on a FORTRANup#-
tion core provided by Kemple and Sadler.

Unitary Associations, Ranking-Scaling or CONOP?

(The below is a personal opinion of O. Hammer only!)

There are now three main paradigms in the field of quantéatixatigraphy (in
addition to the semi-quantitative approach of graphicatetation): Unitary As-
sociations, Ranking-Scaling and Constrained Optimipatibhese methods have
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different aims, use different types of data, and are basadiffament philosophies.
The discussion continues about which method is 'best’, bukame extent the
choice of method will depend on the purpose of the investigatAs a gross gen-
eralization, it might be expected that the probabilistipraach of ranking-scaling
will produce high resolution, but at the cost of basing sorfnée correlations and
zonal boundaries on facies-controlled or geographicallystrained events rather
than global (evolutionary) originations and extinctiotgnitary Associations is a
more conservative approach that will probably be more rotouiew lateral repro-
ducibility, but at the cost of lower resolution. Hence, iutm perhaps be argued
that Unitary Associations might be preferred for 'acadérage, while Ranking-
Scaling is preferable in e.g. hydrocarbon exploration whesolution is important
and diachronous units are to some extent acceptable. CONM@PBires the poten-
tially high resolution of RASC with the preservation of coearrences of UA, at
the cost of non-unigueness of the solution and long comiputdmes.

A major difference between the methods is that the UA metlsdolased on
association data (presence/absence in samples), whil€RAS CONOP use so-
called events such as FADs or LADs. The choice of method mengtbre to some
extent be dictated by the type of data available.

Range confidence intervals

| Typical application | Assumptions | Data needed |

tervals for first or last ap; siliferous horizons through containing the taxon, an
pearances and total rangethe stratigraphic column levels or dates of first an

Estimation of confidence int Random distribution of fost The number of horizons

197 == w

for one taxon. or through time. Section last occurrences of th
should be continuously taxon.
sampled.

Assuming a random (Poisson) distribution of fossiliferbosizons, confidence
intervals for the stratigraphic range of one taxon can beutatied given the first oc-
currence datum (level), last occurrence datum, and totabeu of horizons where
the taxon is found (Strauss & Sadler 1989, Marshall 1990).

No data are needed in the spreadsheet. The program will eiefoumber of
horizons where the taxon is found, and levels or dates fofittsteand last appear-
ances. If necessary, use negative values to ensure thatsthappearance datum
has a higher numerical value than the first appearance d&8ra5 and 99 percent
confidence intervals are calculated for the FAD considenedalation, the LAD
considered in isolation, and the total range. The valpba is the length of the
confidence interval divided by the length of the observedean

Be aware that the assumption of random distribution willmaitl in many real
situations.

65



Distribution free range confidence intervals

| Typical application

| Assumptions

| Data needed

tervals for first or last ap
pearances.

Estimation of confidence int

No correlation

gap size. Section should
continuously sampled.

betweer
stratigraphic position an

found.

1 One column per taxon, with
i levels or dates of all hori
hezons where the taxon is

This method (Marshall 1994) does not assume random distibof fossil-
iferous horizons. It requires that the levels or dates ohatlzons containing the

taxon are given.

The program outputs upper and lower bounds on the lengtheafdnfidence
intervals, using a 95 percent confidence probability, foficence levels of 50, 80
and 95 percent. Values which can not be calculated are mavikbdan asterisk

(see Marshall 1994).

66



14 Acknowledgments

PAST was inspired by and includes many functions found in EPAT, which was
programmed by P.D. Ryan with assistance from J.S. Whalleypét thanks the
Danish Natural Science Research Council (SNF) for suppoits Agterberg and
Felix Gradstein allowed OH access to source code for RASCPater Sadler pro-
vided source code for CONOP. Jean Guex provided a seriegas ifhr improve-
ment and extension of the Unitary Associations module, astd it intensively.

Many users of PAST have given us ideas for improvement anattexgh bugs.
Among these are Charles Galea Bonavia, Hans Arne Nakremadlikortelius,
Knut Rognes, Julian Overnell, Kirsty Brown, Paolo Tomatss&tse Luis Navarrete-
Heredia, Wally Woolfenden, Erik Telie, Fernando Archulan U. Slipper, James
Gallagher, Marcio Pie, Hugo Bucher, Alexey Tesakov, Craigchrlane, José
Camilo Hurtado Guerrero, Wolfgang Kiessling and Bastieruivaz.

15 References

Adrain, J.M., S.R. Westrop & D.E. Chatterton 2000. Siluriglobite alpha diver-
sity and the end-Ordovician mass extincti®al eobiology 26:625-646.
Anderson, M.J. 2001. A new method for non-parametric maftate analysis of
variance.Austral Ecology 26:32-46.

Angiolini, L. & H. Bucher 1999. Taxonomy and quantitativeobhronology of
Guadalupian brachiopods from the Khuff Formation, Souttera OmanGeobios
32:665-699.

Benton, M.J. & G.W. Storrs. 1994. Testing the quality of thedil record: paleon-
tological knowledge is improvingseology 22:111-114.

Bow, S.-T. 1984. Pattern recognition. Marcel Dekker, NewkYo

Brower, J.C. & K.M. Kyle 1988. Seriation of an original datamix as applied to
palaeoecologyl ethaia 21:79-93.

Brown, D. & P. Rothery 1993. Models in biology: mathematisttistics and
computing. John Wiley & Sons, New York.

Bruton, D.L. & A.W. Owen 1988. The Norwegian Upper Ordovitidaenid trilo-
bites. Norsk Geologisk Tidsskrift 68:241-258.

Clarke, K.R. 1993. Non-parametric multivariate analygistanges in community
structure.Australian Journal of Ecology 18:117-143.

Clarke, K.R. & Warwick, R.M. 1998. A taxonomic distinctnasslex and its sta-
tistical propertiesJournal of Applied Ecology 35:523-531.

Colwell, R.K. & J.A. Coddington. 1994. Estimating terréstbiodiversity through
extrapolation. Philosophical Transactions of the Royai&y (Series B) 345:101-
118.

Davis, J.C. 1986. Statistics and Data Analysis in GeologhnJWiley & Sons,
New York.

Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysiiley.

67



Farris, J.S. 1989. The retention index and the rescaledstensy index.Cladis-
tics 5:417-419.

Ferson, S.F., F.J. Rohlf & R.K. Koehn 1985. Measuring shap@tion of two-
dimensional outlinesSystematic Zoology 34:59-68.

Guex, J. 1991. Biochronological Correlations. Springetade Berlin.

Harper, D.A.T. (ed.). 1999. Numerical Palaeobiology. J@filey & Sons, Chich-
ester.

Hennebert, M. & A. Lees. 1991. Environmental gradients ifbonate sediments
and rocks detected by correspondence analysis: exampitaghie Recent of Nor-
way and the Dinantian of southwest Englaiddimentology 38:623-642.

Hill, M.O. & H.G. Gauch Jr. 1980. Detrended Correspondentayssis: an im-
proved ordination techniqué/getatio 42:47-58.

Horn, H.S. 1966. Measurement of overlap in comparativeogichl studiesAmer-
ican Naturalist 100:419-424.

Huelsenbeck, J.P. Comparing the stratigraphic recordtimates of phylogeny.
Paleobiology 20:470-483.

Jolicoeur, P. 1963. The multivariate generalization ofdh@metry equationBio-
metrics 19:497-499.

Jolliffe, 1.T. 1986. Principal Component Analysis. Spremg/erlag, Berlin.
Kemple, W.G., P.M. Sadler & D.J. Strauss. 1989. A prototypastrained op-
timization solution to the time correlation problem. In Adterg, F.P. & G.F.
Bonham-Carter (eds), Statistical Applications in the E@tiences. Geological
Survey of Canada Paper 89-9:417-425.

Kitchin, 1.J., P.L. Forey, C.J. Humphries & D.M. Williams 98. Cladistics. Ox-
ford University Press, Oxford.

Kowalewski, M., E. Dyreson, J.D. Marcot, J.A. Vargas, K.Mieg$sa & D.P. Hall-
mann. 1997. Phenetic discrimination of biometric simpistopaleobiological
implications of morphospecies in the lingulide brachioggldttidia. Paleobiology
23:444-469.

Krebs, C.J. 1989. Ecological Methodology. Harper & Row, Néwk.

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2ndlEhgd. Elsevier,
853 pp.

MacLeod, N. 1999. Generalizing and extending the eigersinagthod of shape
space visualization and analysialeobiology 25:107-138.

Marshall, C.R. 1990. Confidence intervals on stratigrapaiges. Paleobiology
16:1-10.

Marshall, C.R. 1994. Confidence intervals on stratigraphiotges: partial re-
laxation of the assumption of randomly distributed fossitihons. Paleobiology
20:459-469.

Miller, R.L. & Kahn, J.S. 1962. Statistical Analysis in thee@ogical Sciences.
John Wiley & Sons, New York.

Oxanen, J. & P.R. Minchin. 1997. Instability of ordinatiasults under changes in
input data order: explanations and remediesirnal of Viegetation Science 8:447-
454,

68



Poole, R.W. 1974. An introduction to quantitative ecologycGraw-Hill, New
York.

Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flaryér992. Numerical
Recipes in C. Cambridge University Press, Cambridge.

Prokoph, A., A.D. Fowler & R.T. Patterson. 2000. Evidence geriodicity and
nonlinearity in a high-resolution fossil record of long#te evolution. Geology
28:867-870.

Raup, D. & R.E. Crick. 1979. Measurement of faunal simijaiit paleontology.
Journal of Paleontology 53:1213-1227.

Ryan, P.D., Harper, D.A.T. & Whalley, J.S. 1995. PALSTATa#itics for palaeon-
tologists. Chapman & Hall (now Kluwer Academic Publishers)

Savary, J. & J. Guex. 1999. Discrete Biochronological Scaled Unitary Asso-
ciations: Description of the BioGraph Computer Progréiemoires de Geologie
(Lausanne) 34.

Sepkoski, J.J. 1984. A kinetic model of Phanerozoic taxdoalversity. Pal eobi-
ology 10:246-267.

Strauss, D. & P.M. Sadler. 1989. Classical confidence iateand Bayesian prob-
ability estimates for ends of local taxon rangddathematical Geology 21:411-
427.

Taguchi, Y-H. & Oono, Y. In press. Novel hon-metric MDS aljom with confi-
dence level test.

Tothmeresz, B. 1995. Comparison of different methods feemity ordering.
Journal of Viegetation Science 6:283-290.

Wills, M.A. 1999. The gap excess ratio, randomization temtsl the goodness of
fit of trees to stratigraphySystematic Biology 48:559-580.

Zar, J.H. 1996. Biostatistical Analysis. 3rd ed. Prentiad HNew York.

69



